Infinities

CPSC 229: Foundations of Computation • Spring 2024

- a set A is countably infinite if there is a one-to-one correspondence between \mathbb{N} and A
- a set *A* is *countable* if it is either finite or countably infinite – it is possible in principle to make a list of the elements of *A*
- a set A is *uncountable* otherwise
 - it is impossible to make a list of the elements of A

10. Sh	ow tha	t the s	et ℕ×	ℕ is cour	ntable.			
						1		
	diano	naliz	ation	aroum	ant			
use a	ulayu	malizi	auon	aryunn	5110			
(0,0)	(0, 1)	(0, 2)						
(1,0)	(1,1)	(1, 2)						
(2,0)	(2, 1)	(2, 2)						
1	÷	÷	··.					
								_
(0, 0), (0, 1), (1	, 0), (0, 2)), (1, 1)	,(2,0),(0,	3), (1, 2),	(2, 1), (3)	$(, 0), \ldots$	
(-)-//								
(-)-//								

Infinities

- \mathbb{Z} (integer) is countably infinite 0 1 -1 2 -2 3 -3 ... 0 1 2 3 4 5 6 ...
- \mathbb{Q} (rationals) is countably infinite

a) Suppose that A and B are countably infinite sets. Show that $A \cup B$ is countably infinite.

CPSC 229: Foundations of Computation • Spring 2024

CPSC 229: Foundations of Computation • Spring 2024

Infinities

• R (reals) is not countably infinite

for any such list, a new number not in the listed can be constructed by picking a number not in bold for each column

• R\Q (irrationals) is not countably infinite

Theorem 2.9. Suppose that X is an uncountable set, and that K is a countable subset of X. Then the set $X \setminus K$ is uncountable.

CPSC 229: Foundations of Computation • Spring 2024

Infinities

CPSC 229: Foundations of Computation • Spring 2024

Theorem 2.11. Let X be any set. Then there is no one-to-one correspondence between X and $\mathcal{P}(X)$.

- for finite sets, $|\mathcal{P}(X)| = 2^{|X|} > |X|$
- the "larger" relationship holds for infinite sets too
- can construct an infinite series of increasingly larger infinities with R, P(R), P(P(R)), P(P(P(R))), ...