

String Operations

- length is the number of symbols, written $|x|$
- concatenation appends one string to another, written $x y$ - associative - $(x y) z=x(y z)$
not commutative $-x y \neq y x$ unless $x=y$ or $x=\varepsilon$ and/or $y=\varepsilon$
- the reverse string contains the same symbols in the opposite order, written x^{R}
- the empty string ε (sometimes λ) contains no symbols
- |z| = 0
$\varepsilon^{R}=\varepsilon$
$-\varepsilon x=x \varepsilon=x$

Alphabets and Strings

- an alphabet is a finite, non-empty set of symbols
- a string over an alphabet is a finite sequence of symbols from that alphabet
a sequence - the order matters
- two strings are equal only if they have exactly the same symbols in the same order (implies that they have the same length)
- convention
letters from the beginning of the English alphabet (a, b, c, etc) refer to individual symbols
letters from the end of the alphabet (u, v, w, etc) refer to strings

Languages

- Σ^{*} is the set of strings made up of 0 or more symbols from alphabet Σ i.e. the set of all strings over Σ
Σ^{\star} is countably infinite
list the strings in the order of strings with 0 symbols, strings with 1 symbol,
strings with 2 symbols etc - each grit o ilst the strings in the order of strings with 0 symbols, strings with 1 st
strings with 2 symbols, etc - each group of length k strings is finite
- a language over alphabet Σ is a subset of Σ^{*}
a language over Σ is an element of $\mathcal{P}\left(\Sigma^{\star}\right)$ - any set of strings over Σ is a language over Σ
- a language can be finite or infinite
- there are an uncountable number of languages over Σ

Operations on Languages

- languages are sets, so u, \cap, and ${ }^{-}$(complement) operations apply
- the concatenation of two languages S, T

$$
S T=\{s t \mid s \in S \wedge t \in T\}
$$

like the concatenation of strings, associative but not commutative

- $S^{k}=$ language S concatenated to itself k times i.e. the set of strings formed from k strings of S
$-S^{0}=\{\varepsilon\}$ - the set of strings formed from 0 strings
- the Kleene closure $S^{*}=S^{0} \cup S^{1} \cup S^{2} \cup \ldots$ is the set of all strings formed from concatenating 0 or more strings from S
- * = Kleene star

CPSC 229: Fundatans ot Computaion. Spring 202

1. Let $S=\{\varepsilon, a b, a b a b\}$ and $T=\{a a, a b a, a b b a, a b b b a, \ldots\}$. Find the following. $\begin{array}{lllll}\text { a) } S^{2} & \text { b) } S^{3} & \text { c) } S^{*} & \text { d) } S T & \text { e) } T S\end{array}$
2. The reverse of a language L is defined to be $L^{R}=\left\{x^{R} \mid x \in L\right\}$. Find S^{R} and T^{R} for the S and T in the preceding problem
3. Give an example of a language L such that $L=L^{*}$

Stephen Kleene

- 1909-1994
- American mathematician
- last name commonly pronounced KLEE-nee or KLEEN
- Kleene pronounced it KLAY-nee
- known for
recursion theory (a branch of mathematical logic)
- Kleene's recursion theorem
contributions to the foundations of theoretical computer science
Kleene hierarchy, Kleene algebra, Kleene fixedpoint theorem
regular expressions

