Languages, Regular Expressions, and Finite Automata

String Operations

- *length* is the number of symbols, written |x|
- concatenation appends one string to another, written xy

 associative (xy)z = x(yz)
 - not commutative $xy \neq yx$ unless x = y or $x = \varepsilon$ and/or $y = \varepsilon$
- the *reverse* string contains the same symbols in the opposite order, written *x*^{*R*}
- the empty string ϵ (sometimes λ) contains no symbols
 - **-** |ε| = 0
 - ε^R = ε

- ɛx = xɛ = x

CPSC 229: Foundations of Computation • Spring 2024

Alphabets and Strings

- an *alphabet* is a finite, non-empty set of *symbols*
- a *string* over an alphabet is a finite sequence of symbols from that alphabet
 - a sequence the order matters
 - two strings are equal only if they have exactly the same symbols in the same order (implies that they have the same length)
- convention
 - letters from the beginning of the English alphabet (a, b, c, etc) refer to individual symbols
 - letters from the end of the alphabet (u, v, w, etc) refer to strings

Languages

CPSC 229: Foundations of Computation • Spring 2024

- Σ^* is the set of strings made up of 0 or more symbols from alphabet Σ i.e. the set of all strings over Σ
 - $-\Sigma^*$ is countably infinite
 - list the strings in the order of strings with 0 symbols, strings with 1 symbol, strings with 2 symbols, etc – each group of length k strings is finite
- a language over alphabet Σ is a subset of Σ*
 - a language over Σ is an element of $\mathcal{P}(\Sigma^*)$ any set of strings over Σ is a language over Σ
- a language can be finite or infinite
- there are an uncountable number of languages over Σ

CPSC 229: Foundations of Computation • Spring 2024

Operations on Languages

- languages are sets, so ∪, ∩, and (complement) operations apply
- the concatenation of two languages S, T $ST = \{ st \mid s \in S \land t \in T \}$
 - like the concatenation of strings, associative but not commutative
- S^k = language S concatenated to itself k times i.e. the set of strings formed from k strings of S
 - $-S^{0} = \{\epsilon\}$ the set of strings formed from 0 strings
- the Kleene closure $S^* = S^0 \cup S^1 \cup S^2 \cup ...$ is the set of all strings formed from concatenating 0 or more strings from S
 - * = Kleene star

CPSC 229: Foundations of Computation • Spring 2024

CPSC 229: Foundations of Computation • Spring 2024

1. Let $S = \{\varepsilon, ab, abab\}$ and $T = \{aa, aba, abba, abba, abba, \dots\}$. Find the following: **a**) S^2 **b**) S^3 **c**) S^* **d**) ST **e**) TS

2. The **reverse** of a language L is defined to be $L^R = \{x^R \mid x \in L\}$. Find S^R and T^R for the S and T in the preceding problem.

3. Give an example of a language L such that $L = L^*$.

Stephen Kleene

- 1909-1994
- American mathematician
- last name commonly pronounced KLEE-nee or KLEEN
- Kleene pronounced it KLAY-nee
- known for
 - recursion theory (a branch of mathematical logic)
 Kleene's recursion theorem
 - contributions to the foundations of theoretical computer science
 - Kleene hierarchy, Kleene algebra, Kleene fixedpoint theorem
 - regular expressions

CPSC 229: Foundations of Computation • Spring 2024

https://en.wikipedia.org/wiki/Stephen_Cole_Kleene

