Regular Expression

 a regular expression is a specific kind of pattern that describes strings with a certain form

CPSC 229: Foundations of Computation • Spring 2024

Regular Expressions

Definition 3.3. The language generated by a regular expression r, denoted L(r), is defined as follows:

- 1. $L(\Phi) = \emptyset$, i.e. no strings match Φ ;
- 2. $L(\varepsilon) = \{\varepsilon\}$, i.e. ε matches only the empty string;
- 3. $L(a) = \{a\}$, i.e. a matches only the string a;
- 4. $L(r_1 \mid r_2) = L(r_1) \cup L(r_2)$, i.e. $r_1 \mid r_2$ matches strings that match r_1 or r_2 or both;
- 5. $L(r_1r_2) = L(r_1)L(r_2)$, i.e. r_1r_2 matches strings of the form "something that matches r_1 followed by something that matches r_2 ";
- 6. $L(r_1^*) = (L(r_1))^*$, i.e. r_1^* matches sequences of 0 or more strings each of which matches r_1 .
- 7. $L((r_1)) = L(r_1)$, i.e. (r_1) matches exactly those strings matched by r_1 .
- this defines what a given regular expression means

Regular Expressions

Definition 3.2. Let Σ be an alphabet. Then the following patterns are regular expressions over Σ :

1. Φ and ε are regular expressions;

fee or fi? the Greek pronunciation of Φ is fee, but fi is common in (US) English (and math)

- 2. a is a regular expression, for each $a \in \Sigma$;
- 3. if r₁ and r₂ are regular expressions, then so are r₁ | r₂, r₁ · r₂, r¹ and (r₁) (and of course, r² and (r₂)). As in concatenation of strings, the · is often left out of the second expression. (Note: the order of precedence of operators, from lowest to highest, is | , ·, *.)

No other patterns are regular expressions.

 so far this only describes the syntax of a regular expression – what sequences of symbols one can write down to form a regular expression

CPSC 229: Foundations of Computation • Spring 2024

1

Regular Languages

- a language is regular if it is generated by a regular expression
- the union of two regular languages is regular
- the concatenation of two regular languages is regular
- the Kleene closure of a regular language is regular
- 1
- the intersection of two regular languages is regular
- **'**
- the complement of a regular languages is regular

?

CPSC 229: Foundations of Computation • Spring 2024

1. Give English-language descriptions of the languages generated by the following regular expressions.

a) $(a | b)^*$

b) $a^* | b^*$

c) $b^*(ab^*ab^*)^*$

d) $b^*(abb^*)$

2. Give regular expressions over $\Sigma = \{a, b\}$ that generate the following languages.

b) $L_1 = \{x \mid x \text{ contains 3 consecutive } a \text{ 's} \}$ b) $L_2 = \{x \mid x \text{ has even length} \}$ c) $L_3 = \{x \mid n_b(x) = 2 \text{ mod 3} \}$ d) $L_4 = \{x \mid x \text{ contains the substring } aaba \}$

e) $L_5 = \{x \mid n_b(x) < 2\}$ f) $L_6 = \{x \mid x \text{ doesn't end in } aa\}$

3. Prove that all finite languages are regular.

CPSC 229: Foundations of Computation • Spring 2024

