Equivalence of DFAs and NDFAs

- every language accepted by a DFA is accepted by an NDFA
 - a DFA is (essentially) an NDFA NDFA does not require multiple or ε -transitions, and for $\delta(q,a) = q'$, $\partial(q,a) = \{q'\}$
- every language accepted by an NDFA is accepted by a DFA

Theorem 3.2. Every language that is accepted by an NFA is accepted by a DFA.

 proof idea: give an algorithm for constructing an equivalent DFA from an NDFA (then prove the algorithm correct)

NFA to DFA

CPSC 229: Foundations of Computation . Spring 2024

- q_0 corresponds to $\partial^*(p_0, \varepsilon)$
- repeatedly
 - find a state *q* that has been added to *D* but whose out-transitions have not yet been added
 - for each input symbol a, look at all of N's states that can be reached from any one of the p₁, p₂, ..., p_n corresponding to q by consuming a (include ε-transitions)
 - add state $q' = \partial^*(p_1, a) \cup ... \cup \partial^*(p_n, a)$ if not already present
 - add transition $\delta(q,a) = q'$ to D
- accepting states of D are those corresponding to at least one of N's

Equivalence of DFAs and NDFAs

Theorem 3.2. Every language that is accepted by an NFA is accepted by a DFA.

- let NFA $N = (P, \Sigma, p_o, \partial, F)$ and DFA $D = (Q, \Sigma, q_o, \delta, F)$
- idea the states of the DFA D correspond to sets of states in the NDFA N
- q_0 corresponds to $\partial^*(p_0, \varepsilon)$
- repeatedly
 - find a state q that has been added to D but whose out-transitions have not yet been added
 - for each input symbol *a*, look at all of *N*'s states that can be reached from any one of the $p_1, p_2, ..., p_n$ corresponding to *q* by consuming *a* (include ε-transitions)
 - add state $q' = \partial^*(p_1, a) \cup ... \cup \partial^*(p_n, a)$ if not already present
 - add transition $\delta(q,a) = q'$ to D
- accepting states of *D* are those corresponding to at least one of *N*'s

Theorem 3.3. Every language generated by a regular expression can be recognized by an NFA.

- proof idea
 - definition of regular expression is recursive, so utilize proof by induction
- proof sketch

CPSC 229: Foundations of Computation • Spring 2024

- simplest regular expressions are Φ, ε, a build NFA for each of these
- regular expression operators are |, •, * build NFA for each of these