

CPSC 229: Foundations of Computation • Spring 2024 41

Equivalence of DFAs and NDFAs

• every language accepted by a DFA is accepted by an
NDFA
– a DFA is (essentially) an NDFA – NDFA does not require

multiple or ε-transitions, and for δ(q,a) = q’, ∂(q,a) = {q’}

• every language accepted by an NDFA is accepted by a
DFA

– proof idea: give an algorithm for constructing an equivalent DFA
from an NDFA (then prove the algorithm correct)

CPSC 229: Foundations of Computation • Spring 2024 42

Equivalence of DFAs and NDFAs

• let NFA N = (P,Σ,p
0
,∂,F) and DFA D = (Q,Σ,q

0
,δ,F)

• idea – the states of the DFA D correspond to sets of
states in the NDFA N

• q
0
 corresponds to ∂*(p

0
,ε)

• repeatedly
– find a state q that has been added to D but whose out-transitions

have not yet been added
– for each input symbol a, look at all of N’s states that can be

reached from any one of the p
1
, p

2
, …, p

n
 corresponding to q by

consuming a (include ε-transitions)
• add state q’ = ∂*(p

1
,a) ... ∪ ∪ ∂*(p

n
,a) if not already present

• add transition δ(q,a) = q’ to D

• accepting states of D are those corresponding to at least
one of N’s

CPSC 229: Foundations of Computation • Spring 2024 43

• q
0
 corresponds to ∂*(p

0
,ε)

• repeatedly
– find a state q that has been added to D but whose out-transitions

have not yet been added
– for each input symbol a, look at all of N’s states that can be

reached from any one of the p
1
, p

2
, …, p

n
 corresponding to q by

consuming a (include ε-transitions)
• add state q’ = ∂*(p

1
,a) ... ∪ ∪ ∂*(p

n
,a) if not already present

• add transition δ(q,a) = q’ to D

• accepting states of D are those corresponding to at least
one of N’s

NFA to DFA

CPSC 229: Foundations of Computation • Spring 2024 44

CPSC 229: Foundations of Computation • Spring 2024 45

Finite-State Automata and Regular Languages

• proof idea
– definition of regular expression is recursive, so utilize proof by

induction

• proof sketch
– simplest regular expressions are Φ, ε, a

build NFA for each of these

– regular expression operators are |, •, *
build NFA for each of these

