Finite-State Automata and Regular Languages

Theorem 3.3. Every language generated by a regular expression can be
recognized by an NFA.

* proof idea

definition of regular expression is recursive, so utilize proof by
induction

« proof sketch

simplest regular expressions are ®, €, a
build an NFA for each of these

regular expression operators are |, ¢, *
build an NFA for each of these

CPSC 229: Foundations of Computation + Spring 2024 6

Finite-State Automata and Regular Languages

Theorem 3.3. Every language generated by a regular expression can be
recognized by an NFA.

 regular expression operators are |, ¢, *

/e—’ 'O % M,
qnew \ < —Q @

@@ M2
3
M : .Oq o /ﬁ\‘Qq 02 @
new \ T ¢ @

M P M ~—

1 final states 2 final states

of M, of M,

notof M, and of M.,

CP!

Finite-State Automata and Regular Languages

Theorem 3.3. Every language generated by a regular expression can be
recognized by an NFA.

* simplest regular expressions are O, €, a

Consider the regular expression ®. L(®) = {}. Here is a machine that

accepts {}:

Consider the regular expression e. L(e) = {¢}. Here is a machine that

accepts {}:

Consider the regular expression a. L(a) = {a}. Here is a machine that
accepts {a}:

: : % C ——
CPSC 229: Foul a7

Finite-State Automata and Regular Languages

Complete the proof of Theorem 3.3 by showing how to modify a machine that
accepts L(r) into a machine that accepts L(r").

Using the construction described in Theorem 3.3, build an NFA that accepts
L((ab|a)" (bb)).

Show that for any DFA or NFA, there is an NFA with exactly one final state

that accepts the same language.

CPSC 229: Foundations of Computation + Spring 2024 29



Finite-State Automata and Regular Languages

Theorem 3.4. FEvery language that is accepted by a DFA or an NFA is

generated by a regular expression.

* a strategy (not a proof)

if the DFA/NFA has more than one
final state, build an equivalent NFA
with a single final state
repeatedly

« replace cycles with self-loops

« replace simple paths with transitions
labeling the self-loops/transitions with
the string corresponding to the
transitions along the cycle/path,
dropping no-longer-needed transitions
and states

read the final result

CPSC 229: Foundations of Computation + Spring 2024

Finite-State Automata and Regular Languages

g P,
b

if the DFA/NFA has more than one
final state, build an equivalent NFA
with a single final state
repeatedly

« replace cycles with self-loops

« replace simple paths with transitions
labeling the self-loops/transitions
with the string corresponding to the
transitions along the cycle/path,
dropping no-longer-needed
transitions and states

b ()
R L

pﬂ

o

b Q N @:j‘b

CPSC 2291




