Grammars

Rewriting Rules

• a rewriting rule (or production rule or production) $w \rightarrow u$ specifies that the string w can be replaced by the string u

aba → cc

abbabac abbccc

CPSC 229: Foundations of Computation • Spring 2024

The Big Picture

- a grammar defines the syntax of a language
- a generative grammar is a set of rules that can be used to generate all the legal strings in a language
- parsing a string means determining how the rules could generate that string
- what does this have to do with regular expressions and regular languages?
 - a regular expression describes how to generate all the legal strings in a regular language
 - a DFA provides a process for determining whether a particular regular expression generates that string
 - every regular expression can be specified by a type of grammar
 - more generally, grammars allow the specification of non-regular languages

Context-Free Grammars

CPSC 229: Foundations of Computation . Spring 2024

- in a *context-free grammar*, every production has the form $A \rightarrow w$ where A is a single symbol and w is a string of 0 or more symbols "context-free" refers to the idea that A can be replaced anywhere
 - it occurs there's no dependence on the symbols around A

the symbols on the left side of production rules are non-terminal symbols

- convention is to denote them with capital letters
- one, often denoted S, is the start symbol
- the other symbols are *terminal symbols*
 - $A \longrightarrow \varepsilon$

 $A \longrightarrow aAbB$

 $S \longrightarrow SS$

 $C \longrightarrow Acc$ $B \longrightarrow b$

- "terminal" because they cannot be further
- convention is to denote them with lowercase letters

CPSC 229: Foundations of Computation • Spring 2024

substituted

Context-Free Grammars

- to generate the strings in the language, start with the start symbol and apply production rules
 - the strings in the language are those with only terminal symbols

3. Identify the language gen	nerated by each of the following context-free gram-
mars.	
a) $S \longrightarrow aaSb$	b) $S \longrightarrow aSb$
$S \longrightarrow \varepsilon$	$S \longrightarrow aaSb$
	$S \longrightarrow \varepsilon$
c) $S \longrightarrow TS$	d) $S \longrightarrow ABA$
$S \longrightarrow \varepsilon$	$A \longrightarrow aA$
$T \longrightarrow aTb$	$A \longrightarrow a$
$T \longrightarrow \varepsilon$	$B \longrightarrow bB$
	$B \longrightarrow cB$
	$B \longrightarrow \epsilon$
-	
tions of Computation • Spring 2024	

More Notation

CP

- for a context-free grammar G,
 - $x \Rightarrow_G y$ denotes that *y* can be obtained from *x* by applying one of *G*'s productions i.e. there's a rule *A* → *w*, *x* = *uAv*, and *y* = *uwv* • read as "*x* yields y" or "*x* produces y"
 - $-x \Rightarrow^*_G y$ denotes that *y* can be obtained from *x* by applying a sequence of 0 or more of *G*'s production rules
 - read as "x yields y in zero or more steps" or "x produces y in zero or more steps"
 - note that often these are written as just $x \Rightarrow y$ and $x \Rightarrow^* y$ (without the *G* subscript) if the grammar in question is understood

Theorem 4.1. Let G be the context-free grammar (V, Σ, P, S) . Then:

- 1. If x and y are strings in $(V \cup \Sigma)^*$ such that $x \Longrightarrow y$, then $x \Longrightarrow^* y$.
- 2. If x, y, and z are strings in $(V \cup \Sigma)^*$ such that $x \Longrightarrow^* y$ and $y \Longrightarrow^* z$, then $x \Longrightarrow^* z$.
- If x and y are strings in (V ∪ Σ)* such that x ⇒ y, and if s and t are any strings in (V ∪ Σ)*, then sxt ⇒ syt.
- If x and y are strings in (V ∪ Σ)* such that x ⇒*y, and if s and t are any strings in (V ∪ Σ)*, then sxt ⇒*syt.

- **Definition 4.1.** A context-free grammar is a 4-tuple (V, Σ, P, S) , where: 1. V is a finite set of symbols. The elements of V are the non-terminal symbols of the grammar.
- 2. Σ is a finite set of symbols such that $V \cap \Sigma = \emptyset$. The elements of Σ are the terminal symbols of the grammar.
- 3. P is a set of production rules. Each rule is of the form $A \longrightarrow w$ where
- A is one of the symbols in V and w is a string in the language $(V\cup\Sigma)^*.$
- 4. $S \in V.~S$ is the start symbol of the grammar.
- informally, a context-free grammar is often specified just by listing the production rules
 - terminal symbols are those on the left side of productions
 - start symbol is the symbol on the left side of the first production listed
 - non-terminal symbols are those that only appear on the right side of productions

Context-Free Languages

CPSC 229: Foundations of Computation • Spring 2024

Definition 4.2. Suppose that $G = (V, \Sigma, P, S)$ is a context-free grammar. Then the language generated by G is the language L(G) over the alphabet Σ defined by

 $L(G) = \{ w \in \Sigma^* \mid S \Longrightarrow_G^* w \}$

- a language *L* is a *context-free language* if there is a context-free grammar *G* such that L(G) = L
- there is not necessarily a unique *G* producing a given language
- two context-free grammars that generate the same language are equivalent
- the sequence $S \Rightarrow x1 \Rightarrow x2 \Rightarrow ... \Rightarrow w$ is a *derivation* of w in the grammar G
 - there may be more than one way to derive a given string

CPSC 229: Foundations of Computation • Spring 2024

4. En esch of the following law more free	In our test for a manufacture that any set of	
 For each of the following languages into the language; 	a context-free grammar that generates	
a) $\{a^n b^m \mid n \ge m > 0\}$	b) $\{a^n b^m \mid n, m \in \mathbb{N}\}$	
c) $\{a^n b^m n \ge 0 \land m = n + 1\}$	d) $\{a^n b^m c^n \mid n, m \in \mathbb{N}\}$	
e) $\{a^n b^m c^r d^t n = m + \kappa\}$ g) $\{a^n b^m c^r d^t n + m = r + t\}$	1) $\{a^n b^m n \neq m\}$ b) $\{a^n b^m c^k n \neq m + k\}$	
a, (
		_