

CPSC 229: Foundations of Computation • Spring 2024 44

• find a right derivation for (x+y)*z

CPSC 229: Foundations of Computation • Spring 2024 45

Parsing Context-Free Grammars

• in an unambiguous grammar G, at each step in a left
derivation there’s only one production that can be applied
that will lead to a correct derivation of w

• G is an LL(1) grammar if that one production can be
determined by (only) looking ahead to the next symbol in
w
– LL(1) means w is read Left-to-right and a Left derivation is

constructed by looking ahead at most 1 character in w
– not all unambiguous context-free grammars are LL(1)

• G is an LR(1) grammar if it is always possible to tell which
rule to apply at each step of the right derivation by (only)
looking ahead to the next symbol in w
– LR(1) means w is read Left-to-right and a Right derivation is

constructed by looking ahead at most 1 character in w

CPSC 229: Foundations of Computation • Spring 2024 46

LR(1) Parsing

• shift/reduce algorithm

– two operations –
• shift the current position one place to the right
• reduce by applying a production to the string to the immediate left of the

current position
– if A → xy is a production, then reduce Cbxy | ijk ⇒ CbA | ijk

– maintain a current position in w, starting at the left end: |w
– reduce if possible, shift otherwise
– resolve ambiguities in reductions by looking ahead

one character
• if this is always possible, the grammar is an LR(1) grammar

• parse (x+y)*z using the LR(1) parsing algorithm

CPSC 229: Foundations of Computation • Spring 2024 47

CPSC 229: Foundations of Computation • Spring 2024 48

LL(1) vs LR(1)

• LR(1) is strictly more powerful than LL(1)
– there are LL(1) grammars that are not LR(1), but every LL(1)

grammar is guaranteed to be LR(1)

• LL(1) and LR(1) are just the tip of the iceberg
– LL(0), LR(0)
– SLR(1)
– LALR(1)
– LL(k),LR(k)

– differ in power but also memory requirements and complexity of
the algorithm

– LL(1) and LALR(1) are most common in real compilers
• even though LR(1) is more powerful, it has high memory requirements

and in general, LL(1) and LALR(1) grammars can be constructed for real
programming languages

• real parsers are typically produced by parser generators

CPSC 229: Foundations of Computation • Spring 2024 49

Parse Trees

• a parse tree is another way of showing a derivation

CPSC 229: Foundations of Computation • Spring 2024 50

Parse Trees

(also right derivations)

CPSC 229: Foundations of Computation • Spring 2024 51

CPSC 229: Foundations of Computation • Spring 2024 52

