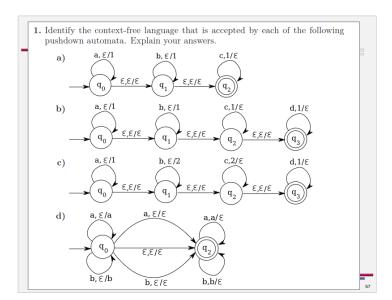

## Pushdown Automata

 a pushdown automaton is a finitestate automaton with a stack which acts as a memory




- each transition σ,x/y represents consuming symbol σ from the input string, popping x from the stack, and pushing y onto the stack
- a string is accepted if the machine finishes in an accepting state with an empty stack



CPSC 229: Foundations of Computation • Spring 2024

https://www.programiz.com/dsa/stack



## Pushdown Automata

**Definition 4.4.** A pushdown automaton M is specified by six components  $M=(Q,\Sigma,\Lambda,q_0,\partial,F)$  where

- Q is a finite set of states.
- $\Sigma$  is an alphabet.  $\Sigma$  is the **input alphabet** for M.
- $\Lambda$  is an alphabet.  $\Lambda$  is the **stack alphabet** for M.
- be the same as those in the language accepted

the symbols used in the stack

do not have to

- $q_0 \in Q$  is the **start state** of M.
- $F \subseteq Q$  is the set of **final** or **accepting** states in M.
- $\partial$  is the set of transitions in M.  $\partial$  can be taken to be a finite subset of the set  $(Q \times (\Sigma \cup \{\varepsilon\}) \times \Lambda^*) \times (Q \times \Lambda^*)$ . An element  $((q_1, \sigma, x), (q_2, y))$  of  $\partial$  represents a transition from state  $q_1$  to state  $q_2$  in which M reads  $\sigma$  from its input string, pops x from the stack, and pushes y onto the stack

CPSC 229: Foundations of Computation • Spring 2024

5

2. Let B be the language over the alphabet {(,)} that consists of strings of parentheses that are balanced in the sense that every left parenthesis has a matching right parenthesis. Examples include (), (())(, ((())())(()), and the empty string. Find a deterministic pushdown automaton with a single state that accepts the language B. Explain how your automaton works, and explain the circumstances in which it will fail to accept a given string of parentheses.

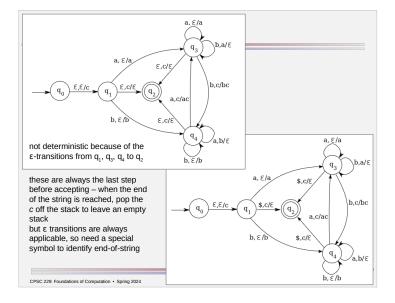
CPSC 229: Foundations of Computation • Spring 2024

## **Deterministic Pushdown Automata**

- a pushdown automaton is deterministic if there is no circumstance under which two different transition rules can apply

**Definition 4.5.** Let L be a language over an alphabet  $\Sigma$ , and let \$ be a symbol that is not in  $\Sigma$ . We say that L is a **deterministic context-free language** if there is a deterministic pushdown automaton that accepts the language L\$ (which is equal to  $\{w\$ \mid w \in L\}$ ).

- a deterministic context-free language can be parsed efficiently
- there are context-free languages that are not deterministic context-free
- why the \$?


CPSC 229: Foundations of Computation • Spring 2024

59

- 4. Find a deterministic pushdown automaton that accepts the language  $\{wcw^R \mid w \in \{a,b\}^*\}$ .
- **5.** Show that the language  $\{a^nb^m \mid n \neq m\}$  is deterministic context-free.
- **6.** Show that the language  $L=\{w\in\{a,b\}^*\,|\,n_a(w)>n_b(w)\}$  is deterministic context-free.
- 3. Suppose that L is language over an alphabet  $\Sigma$ . Suppose that there is a deterministic pushdown automaton that accepts L. Show that L is deterministic context-free. That is, show how to construct a deterministic pushdown automaton that accepts the language L\$. (Assume that the symbol \$ is not in  $\Sigma$ .)

CPSC 229: Foundations of Computation • Spring 2024

\_\_\_

