

7. Let $M = (Q, \Sigma, \Lambda, q_0, \partial, F)$ be a pushdown automaton. Define L'(M) to be the language $L'(M) = \{w \in \Sigma^* \mid \text{it is possible for } M \text{ to start in state } q_0, \text{ read all of } w, \text{ and end in an accepting state}\}$. L'(M) differs from L(M) in that for $w \in L'(M)$, we do not require that the stack be empty at the end of the computation. **a)** Show that there is a pushdown automaton M' such that L(M') =

- a) Show that there is a pushdown automaton M such that L(M) = L'(M).
- b) Show that a language L is context-free if and only if there is a pushdown automaton M such that L = L'(M).
- c) Identify the language L'(M) for each of the automata in Exercise 1.

8. Let L be a regular language over an alphabet Σ, and let K be a context-free language over the same alphabet. Let M = (Q, Σ, q₀, δ, F) be a DFA that accepts L, and let N = (P, Σ, Λ, p₀, ∂, E)) be a pushdown automaton that accepts K. Show that the language L ∩ K is context-free by constructing a pushdown automaton that accepts L ∩ K. The pushdown automaton can be constructed as a "cross product" of M and N in which the set of states is Q × P. The construction is analogous to the proof that the intersection of two regular languages is regular, as outlined in Exercise 3.6.7.

CPSC 229: Foundations of Computation • Spring 2024

1. $((q_0,\varepsilon,\varepsilon),(q_1,S));$		push the start symbol on the stack				
2. $((q_1, \sigma, \sigma), (q_1, \varepsilon))$, for $\sigma \in \Sigma$; and		read a terminal symbol, matching it with the top of the stack				
3. $((q_1, \varepsilon, A), (q_1, x))$, for each production $A \longrightarrow x$ in G .						
$S \longrightarrow AB$	$S \longrightarrow AB$			replace a non-terminal on the top of the stack with the right side of the production		
$A \longrightarrow aAb$	input: aabbbb		-			
$A \longrightarrow \varepsilon$		Input				
$B \longrightarrow bB$	<u>Transition</u>	Consumed	Stack	<u>Derivation</u>		
$B \longrightarrow b$	$((q_0,\varepsilon,\varepsilon),(q_1,S))$		S top			
	$((q_1,\varepsilon,S),(q_1,AB))$		AB	$S \Longrightarrow AB$		
$((q_0,\varepsilon,\varepsilon),(q_1,S))$	$((q_1,\varepsilon,A),(q_1,aAb))$		aAbB	$\implies aAbB$		
$((q_1, a, a), (q_1, \varepsilon))$	$((q_1, a, a), (q_1, \varepsilon))$	a	AbB	(11.5		
((a, b, b), (a, c))	$((q_1,\varepsilon,A),(q_1,aAb))$	a	aAbbB	$\Rightarrow aaAbbB$		
$((q_1, o, o), (q_1, c))$	$((q_1, a, a), (q_1, \varepsilon))$	aa	A00B	s a shi D		
$((q_1,\varepsilon,S),(q_1,AB))$	$((q_1, \varepsilon, A), (q_1, \varepsilon))$ $((q_1, b, b), (q_2, c))$	aa	bB	$\Rightarrow aaoob$		
$((q_1,\varepsilon,A),(q_1,aAb))$	$((q_1, o, o), (q_1, \varepsilon))$ $((q_1, b, b), (q_1, \varepsilon))$	aabb	B			
$((a_1 \in A) (a_1 \in))$	$((q_1, \varepsilon, B), (q_1, \varepsilon))$ $((a_1, \varepsilon, B), (a_1, bB))$	aabb	bB	$\implies aabbbB$		
$((q_1, c, r_1), (q_1, c))$	$((q_1, b), (q_1, b, \varepsilon))$	aabbb	B	, 1400015		
$((q_1,\varepsilon,B),(q_1,bB))$	$((q_1,\varepsilon,B),(q_1,b))$	aabbb	b	$\implies aabbbb$		
$((q_1,\varepsilon,B),(q_1,b))$	$((q_1, b, b), (q_1, \varepsilon))$	aabbbb				

Non-Context-Free Languages

- just like there are languages that aren't regular, there are languages that aren't context-free
- there is a pumping lemma for context-free languages similar to the one for regular languages
 - idea for regular languages
 - a DFA/NFA only has a finite number of states, so for any sufficiently long string, a state must be repeated – that provides a loop which can be "pumped" to generate a set of strings, all of which are in the language
 - idea for context-free languages
 - a context-free grammar only has a finite number of non-terminals, so for any sufficiently long string, there's a root-to-leaf path in the parse tree where a non-terminal is repeated – that provides a loop which can be "pumped" to generate a set of strings, all of which are in the language
- the intersection of two context-free languages is not necessarily context-free

CPSC 229: Foundations of Computation • Spring 2024