Turing Machines and Computability

Alan Turing

- English mathematician, 1912-1954
- known for
 - fundamental contributions to theoretical computer science
 Turing machines
 - Church-Turing thesis
 - fundamental contributions to artificial intelligence
 Turing test
 - developments in codebreaking and crucial contributions to the cracking of Enigma (World War II)
 - contributions to mathematical biology
- the Turing Award (1966-) is the highest distinction in computer science
- convicted of homosexual acts in 1952
 - official apology in 2009
 - royal pardon from Queen Elizabeth II in 2013
 2017 "Alan Turing law" retroactively pardoned
 - others similarly convicted https://www.nylimes.com/2019/06/05/obiluaries/all https://www.nylimes.com/2019/06/05/obiluaries/all

Turing-computable / computes

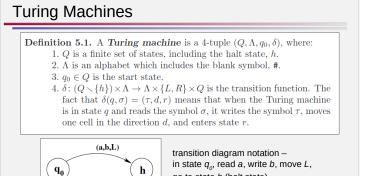
a function – Turing-decidable / decides a

the Turing machine as a model of

definitions and terminology

 Turing machine
 running with input w
 halting with output x

The Big Picture


computation

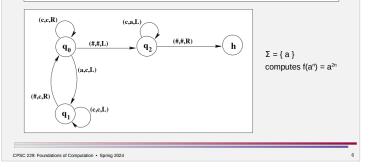
CPSC 229: Foundations of Computation • Spring 2024

language – Turing-acceptable / accepts a language

https://www.felienne.com/archives/2974

- go to state *h* (halt state)
- running M with input w start with a tape that is blank except for w, the machine placed on the first cell of w, and the machine in state q_a
- *M* halts with output *x* end with a tape that is blank except for *x*, the machine placed on the first cell of *x*, and the machine in state *h*
- other outcomes M fails to halt, M halts in some other configuration

Physical Turing Machines


LEGO Turing Machine https://www.youtube.com/watch?v=FTSAiF9AHN4

from the 2012 GO ASK A.L.I.C.E. exhibition at Harvard University's Collection of Historical Scientific Instruments https://commons.wikimedia.org/wiki/ File:Turing_Machine_Model_Davey_2012.jpg

CPSC 229: Foundations of Computation • Spring 2024

Computing Functions

Definition 5.2. Suppose that Σ and Γ are alphabets that do not contain **#** and that f is a function from Σ^* to Γ^* . We say that f is **Turing-computable** if there is a Turing machine $M = (Q, \Lambda, q_0, \delta)$ such that $\Sigma \subseteq \Lambda$ and $\Gamma \subseteq \Lambda$ and for each string $w \in \Sigma^*$, when M is run with input w, it halts with output f(w). In this case, we say that M computes the function f.

