Computability — Key Points

Church-Turing thesis and its importance

definitions of recursively enumerable and recursive with
respect to languages

intuition for the equivalence of Turing machines to other
models of computation, including real computers

CPSC 229: Foundations of Computation + Spring 2024 u

Alonzo Church

American mathematician, 1903-1995

known for
major contributes to mathematical logic
foundational contributions to theoretical computer science

A calculus
underlies functional programming languages such as Scheme as well as
Java lambda expressions

Church’s theorem

proved the unsolvability of the Entscheidungsproblem (decision problem)
by showing that there is no computable function which decides if two
given A-calculus expressions are equivalent

Church-Turing thesis

CPSC 229: Foundations of Computation « Spring 2024 https://en.wikipedia.org/wiki/Alonzo_Church 13

Church-Turing Thesis

an effective method is one which
can be expressed by a finite number of instructions, each
involving a finite number of symbols

always terminates in a finite number of steps, and always
produces a correct answer

can, at least in principle, be carried out by a human with only
pencil and paper

requires no ingenuity, only rote following of the instructions

the Church-Turing thesis states that

a function on the natural numbers can be calculated by an
effective method if and only if it is computable by a Turing
machine

CPSC 229: Foundations of Computation + Spring 2024 12

Two (Multi)-Tape Turing Machines

two (or more) tapes, each with separate
read/write heads

idea
let M be a two-tape Turing machine and K be
a one-tape Turing machine

introduce two new symbols (e.g. @, $) to
mark the position of the read/write heads
and separate tape 1's contents from tape 2

K’s tape will contain the contents of M's tape 1 followed by the
contents of M's tape 2, with @ inserted to the left of the head
position on each tape and $ at the beginning, end, and between
the two tapes
e.g. if M's tapes contain abb##cca and 01#111#001, respectively, with
the heads on the underlined symbols, then K’s tape will contain
$a@bb##ccas01#111#00@1$
to simulate M’s operation, K scans tape to find symbols to the
right of the @ symbols, then updates its state and the tape -
content accordingly

-
[e[e[baTaflceTcRe]aT]

https://gyires.inf.unideb.hu/GyBITT/26/ch04s06.html 4

Recursively Enumerable

* arecursively enumerable language is one for which there
is a program whose output is exactly the strings in the
language

* arecursively enumerable language is one whose strings
can be output on the second tape of a two-tape Turing
machine

no requirement as to order, and repeats are allowed

CPSC 229: Foundations of Computation + Spring 2024 15

Theorem 5.1. Let I be an alphabet and let L be a language over . Then

o the following are equivalent:

1. There is a Turing machine that accepts L.

2. There is a two-tape Turing machine that runs forever, making a
list of strings on its second tape, such that a string w is in the list
if and only if w € L.

3. There is a Turing-computable function f: {a}* — ¥* such that L
is the range of the function f.

* idea of proof
property 2 — property 1
« let L be a language that satisfies property 2
* let T be a two-tape Turing machine that lists the elements of L

« construct M which, given an input w, simulates the computation of T —when
T produces a string in the list, M compares the string to w and halts if they
are the same

= if w € L, T will eventually produce it and M will halt -~ M accepts L

CPSC 229: Foundations of Computation + Spring 2024 17

 the following are equivalent:

Theorem 5.1. Let 3 be an alphabet and let L be a language over . Then

1. There is a Turing machine that accepts L.

2. There is a two-tape Turing machine that runs forever, making a
list of strings on its second tape, such that a string w is in the list
if and only of w € L.

3. There is a Turing-computable function f: {a}* — X* such that L
is the range of the function f.

* idea of proof
property 3 — property 2
« let L be a language that satisfies property 3
« construct a two-tape Turing machine that, for each n = 0, uses tape 1 to
generate @” and compute f(a"), then copies f(a") to tape 2
property 2 — property 3
* let M be a machine that lists L
- define g to be the function where g(a") is the (n+1)" item in the list
produced by M

« g is Turing-computable because g(a") can be produced by running M until
the (n+1)" item is produced, then halting with that item as the output

CPSC 229: Foundations of Computation + Spring 2024 16

o the following are equivalent:

Theorem 5.1. Let X be an alphabet and let L be a language over X. Then

1. There is a Turing machine that accepts L.

2. There is a two-tape Turing machine that runs forever, making a
list of strings on its second tape, such that a string w is in the list
if and only if w € L.

3. There is a Turing-computable function f: {a}* — £* such that L
is the range of the function f.

* idea of proof
property 1 — property 2

« let L be Turing-acceptable and M be a machine that accepts L

« cannot build a two-tape machine T by generating each of the elements of 2*
in turn, checking to see if M accepts each because M only halts if w € L

» T must instead simulate M on all of the elements of L at once — it repeatedly
generates the next element in 2" and then advances M one step on all of the
current elements, writing the corresponding input to tape 2 whenever a
computation halts

« T eventually goes through all elements of 2*, and simulation of M will
eventually end for all w € L, so T will eventually produce all w € L

CPSC 229: Foundations of Computation + Spring 2024 18

Theorem 5.2. A language L is Turing acceptable (equivalently, recursively
enumerable) if and only if there is a general grammar that generates L.

* idea of proof

grammar — Turing acceptable
* M generates every string derivable from the start symbol S —
start with w$S on the tape
repeatedly
for each string on the tape and each production x - y, if x occurs in the
s(riﬁg, append $ to the end of the tape and copy the string, replacing x
with y
compare the new string to w, halting if they match
= if w € L, eventually M will produce it and halt

CPSC 229: Foundations of Computation + Spring 2024 19

