

CPSC 229: Foundations of Computation • Spring 2024 11

Computability – Key Points

• Church-Turing thesis and its importance

• definitions of recursively enumerable and recursive with
respect to languages

• intuition for the equivalence of Turing machines to other
models of computation, including real computers

CPSC 229: Foundations of Computation • Spring 2024 12

Church-Turing Thesis

• an effective method is one which

– can be expressed by a finite number of instructions, each
involving a finite number of symbols

– always terminates in a finite number of steps, and always
produces a correct answer

– can, at least in principle, be carried out by a human with only
pencil and paper

– requires no ingenuity, only rote following of the instructions

• the Church-Turing thesis states that

a function on the natural numbers can be calculated by an
effective method if and only if it is computable by a Turing
machine

CPSC 229: Foundations of Computation • Spring 2024 13

Alonzo Church

• American mathematician, 1903-1995

• known for
– major contributes to mathematical logic
– foundational contributions to theoretical computer science

– λ calculus
• underlies functional programming languages such as Scheme as well as

Java lambda expressions

– Church’s theorem
• proved the unsolvability of the Entscheidungsproblem (decision problem)

by showing that there is no computable function which decides if two
given λ-calculus expressions are equivalent

– Church-Turing thesis

https://en.wikipedia.org/wiki/Alonzo_Church CPSC 229: Foundations of Computation • Spring 2024 14

Two (Multi)-Tape Turing Machines

• two (or more) tapes, each with separate
read/write heads

• idea
– let M be a two-tape Turing machine and K be

a one-tape Turing machine
– introduce two new symbols (e.g. @, $) to

mark the position of the read/write heads
and separate tape 1’s contents from tape 2

– K’s tape will contain the contents of M’s tape 1 followed by the
contents of M’s tape 2, with @ inserted to the left of the head
position on each tape and $ at the beginning, end, and between
the two tapes

• e.g. if M’s tapes contain abb##cca and 01#111#001, respectively, with
the heads on the underlined symbols, then K’s tape will contain
$a@bb##cca$01#111#00@1$

– to simulate M’s operation, K scans tape to find symbols to the
right of the @ symbols, then updates its state and the tape
content accordingly https://gyires.inf.unideb.hu/GyBITT/26/ch04s06.html

CPSC 229: Foundations of Computation • Spring 2024 15

Recursively Enumerable

• a recursively enumerable language is one for which there
is a program whose output is exactly the strings in the
language

• a recursively enumerable language is one whose strings
can be output on the second tape of a two-tape Turing
machine
– no requirement as to order, and repeats are allowed

CPSC 229: Foundations of Computation • Spring 2024 16

• idea of proof
– property 3 → property 2

• let L be a language that satisfies property 3
• construct a two-tape Turing machine that, for each n ≥ 0, uses tape 1 to

generate an and compute f(an), then copies f(an) to tape 2

– property 2 → property 3
• let M be a machine that lists L
• define g to be the function where g(an) is the (n+1)th item in the list

produced by M
• g is Turing-computable because g(an) can be produced by running M until

the (n+1)th item is produced, then halting with that item as the output

CPSC 229: Foundations of Computation • Spring 2024 17

• idea of proof
– property 2 → property 1

• let L be a language that satisfies property 2
• let T be a two-tape Turing machine that lists the elements of L
• construct M which, given an input w, simulates the computation of T – when

T produces a string in the list, M compares the string to w and halts if they
are the same

• if w ∈ L, T will eventually produce it and M will halt → M accepts L

CPSC 229: Foundations of Computation • Spring 2024 18

• idea of proof
– property 1 → property 2

• let L be Turing-acceptable and M be a machine that accepts L
• cannot build a two-tape machine T by generating each of the elements of Σ*

in turn, checking to see if M accepts each because M only halts if w ∈ L
• T must instead simulate M on all of the elements of L at once – it repeatedly

generates the next element in Σ* and then advances M one step on all of the
current elements, writing the corresponding input to tape 2 whenever a
computation halts

• T eventually goes through all elements of Σ*, and simulation of M will
eventually end for all w ∈ L, so T will eventually produce all w ∈ L

CPSC 229: Foundations of Computation • Spring 2024 19

• idea of proof
– grammar → Turing acceptable

• M generates every string derivable from the start symbol S –
– start with w$S on the tape
– repeatedly

» for each string on the tape and each production x → y, if x occurs in the
string, append $ to the end of the tape and copy the string, replacing x
with y

» compare the new string to w, halting if they match
• if w ∈ L, eventually M will produce it and halt

