Theorem 5.2. A language L is Turing acceptable (equivalently, recursively
enumerable) if and only if there is a general grammar that generates L.

* idea of proof

grammar — Turing acceptable
* M generates every string derivable from the start symbol S —
start with w$S on the tape
repeatedly
for each string on the tape and each production x - y, if x occurs in the
styirr]1g, append $ to the end of the tape and copy the string, replacing x
with y
compare the new string to w, halting if they match
= if w € L, eventually M will produce it and halt

CPSC 229: Foundations of Computation + Spring 2024 20

* L is Turing-decidable if and only if both L and its
complement are Turing-acceptable

idea of proof, only if direction (acceptable - decidable) —
* let M be a Turing machine accepting L and M’ be a Turing machine
accepting L's complement
* build T to decide L

simulate both M and M’ on w one step at a time, halting with output 1 if M
terminates and output 0 if M’ terminates

if L and L's complement are both Turing-acceptable, either M or M’ will halt on
w and thus T halts on w

idea of proof, if direction (decidable — acceptable)
« let M be a Turing machine deciding L
* build T to accept L
simulate M on w, then halt with output 1 if M halts with output 1 or go into an
infinite loop if M halts with output 0
* build T to accept the complement of L

simulate M on w, then halt with output 1 if M halts with output O or go into an
infinite loop if M halts with output 1

CPSC 229: Foundations of Computation + Spring 2024 2

Theorem 5.2. A language L is Turing acceptable (equivalently, recursively
enumerable) if and only if there is a general grammar that generates L.

* idea of proof

: B A
Turing acceptable — grammar s

. . . A A
* idea: build a grammar whose rules simulate the steps of M A ¢
A— £
« let the terminal symbols of G be the symbols from X
« let the non-terminal symbols of G be the states of M, the qi0 — Tq;

alphabet symbols notin Z, <, >, S, A

AGio — AT

produce any string of the form <q,a">

represents a configuration of M with M in its start state, <— <#
positioned at the beginning of a string of n a’s P P
* capture transition 5(g,,s) = (T,R|ql) S #

capture transition 6(g,,s) = (T,L,q/.), for each of the / > >

alphabet symbols A
« add and remove blanks from the end of the current portion <h—rh
of the tape as needed h>—¢

clean up when M has halted

ho — oh '2

« this can be generalized to other models of computation —

recursively enumerable is a synonym for Turing-acceptable
(Thm 5.1)

recursive is a synonym for Turing-decidable

Theorem 5.3. Let X be an alphabet and let L be a language over 3. Then L
is recursive if and only if both L and its complement, ¥* \ L, are recursively
enumerable.

CPSC 229: Foundations of Computation + Spring 2024 2

m

1. The language L = {a™ |m > 0} is the range of the function f(a™) = o',

Design a Turing machine that computes this function, and find the grammar
that generates the language L by imitating the computation of that machine.

3. Show that a language L over an alphabet ¥ is recursive if and only if there
are grammars G and H such that the language generated by GG is L and the
language generated by H is X" ~ L.

CPSC 229: Foundations of Computation + Spring 2024 24

Uncomputable Languages

* most languages are not recursively enumerable

» what do these languages look like?

whatever property defines whether wis in L can’t be computable

« there is no Turing machine (or computer program) that tests whether w
has the property

CPSC 229: Foundations of Computation + Spring 2024 2

Computable Languages

* recursively enumerable languages are languages that can
be defined by computation

« so far, every computational method developed for
specifying languages produces only recursively
enumerable languages

 yet, most languages are not recursively enumerable

there are uncountably many languages over a particular
alphabet

there are only countably many recursively enumerable
languages over the same alphabet

CPSC 229: Foundations of Computation + Spring 2024 25

Symbolic Representation of Turing Machines

 consider a Turing machine M

* we can assume, without loss of generality —
q is the start state, h is the halt state, and the other states are
named q’, 9", q"", ...
the symbols are 0, 1, a, # (blank) with auxiliary symbols a’, a”,
a”, ..

« call such a Turing machine a standard Turing machine

* M can be represented with a string of symbols from the
alphabet{h,q,L,R,#,0,1,a,‘, $}
the transition rule 6(g”,0) = (a™,L,q) is encoded as q’ '0a’ ' 'Lq
encode a complete machine by listing the transition rules,
separated by $
without loss of generality (w.l.0.g.) — this assumption does not

limit what we can consider because states and symbols can
be renamed without changing the machine’s function

CPSC 229: Foundations of Computation + Spring 2024 27

A Turing Machine Generator

* not every string involving the alphabet{ h,q,L, R, #,0, 1, a, ',
$ }is an encoded standard Turing machine
but whether or not w is an encoded Turing machine can be checked

« alist of all strings encoding standard Turing machines can be
generated —
generate all strings over { h,q,L, R, #,0,1,a,‘,$}
for each string w, check if it encodes a Turing machine
if so, add w to the output list
« the symbolic representation of standard Turing machines is a
recursively enumerable set
let T, be the machine encoded by the ith string produced
given n € N, the symbolic representation for T, can be found by
repeating the process n+1 times

* let G be a Turing machine which, when run with input a", halts
with the encoding of T,

CPSC 229: Foundations of Computation + Spring 2024 28

Theorem 5.4. Let Ty, 11, 1o, ..., be the standard Turing machines, as
described above. Let K be the language over the alphabet {a} defined by

K ={a" | T, halts when run with input a™}.

Then K is a recursively enumerable language, but K is not recursive. The
complement

K = {a"| T, does not halt when run with input a™}.

is a language that is not recursively enumerable.

CPSC 229: Foundations of Computation + Spring 2024 30

Universal Turing Machine

* the universal Turing machine U simulates the
computation of any standard Turing machine T on any
input w

(the symbolic representation of) T and w are written on U’s tape

U keeps track of T's state and position
« T's state is written after w on the tape

+ use a special symbol @ to the left of the current symbol in w to denote the
current position

U’s operation
« write @ at the beginning of w and g after w
« for each step in the computation of T
determine the current state and symbol for T
locate a transition rule that applies in this case

update the representation of T's state, position, and tape to reflect applying
the transition

if the new state is h, halt

observation: U halts if and only if T halts on input w

CPSC 229: Foundations of Computation + Spring 2024 29

