

CPSC 229: Foundations of Computation • Spring 2024 20

• idea of proof
– grammar → Turing acceptable

• M generates every string derivable from the start symbol S –
– start with w$S on the tape
– repeatedly

» for each string on the tape and each production x → y, if x occurs in the
string, append $ to the end of the tape and copy the string, replacing x
with y

» compare the new string to w, halting if they match
• if w ∈ L, eventually M will produce it and halt

CPSC 229: Foundations of Computation • Spring 2024 21

• idea of proof
– Turing acceptable → grammar

• idea: build a grammar whose rules simulate the steps of M

• let the terminal symbols of G be the symbols from Σ
• let the non-terminal symbols of G be the states of M, the

alphabet symbols not in Σ, <, >, S, A

• produce any string of the form <q0a
n>

– represents a configuration of M with M in its start state,
positioned at the beginning of a string of n a’s

• capture transition δ(q
i
,s) = (τ,R,q

j
)

• capture transition δ(qi,s) = (τ,L,qj), for each of the
alphabet symbols λ

• add and remove blanks from the end of the current portion
of the tape as needed

• clean up when M has halted

CPSC 229: Foundations of Computation • Spring 2024 22

• L is Turing-decidable if and only if both L and its
complement are Turing-acceptable

– idea of proof, only if direction (acceptable → decidable) –
• let M be a Turing machine accepting L and M’ be a Turing machine

accepting L’s complement
• build T to decide L

– simulate both M and M’ on w one step at a time, halting with output 1 if M
terminates and output 0 if M’ terminates

– if L and L’s complement are both Turing-acceptable, either M or M’ will halt on
w and thus T halts on w

– idea of proof, if direction (decidable → acceptable)
• let M be a Turing machine deciding L
• build T to accept L

– simulate M on w, then halt with output 1 if M halts with output 1 or go into an
infinite loop if M halts with output 0

• build T’ to accept the complement of L
– simulate M on w, then halt with output 1 if M halts with output 0 or go into an

infinite loop if M halts with output 1

CPSC 229: Foundations of Computation • Spring 2024 23

• this can be generalized to other models of computation –

– recursively enumerable is a synonym for Turing-acceptable
(Thm 5.1)

– recursive is a synonym for Turing-decidable

CPSC 229: Foundations of Computation • Spring 2024 24 CPSC 229: Foundations of Computation • Spring 2024 25

Computable Languages

• recursively enumerable languages are languages that can
be defined by computation

• so far, every computational method developed for
specifying languages produces only recursively
enumerable languages

• yet, most languages are not recursively enumerable
– there are uncountably many languages over a particular

alphabet
– there are only countably many recursively enumerable

languages over the same alphabet

CPSC 229: Foundations of Computation • Spring 2024 26

Uncomputable Languages

• most languages are not recursively enumerable

• what do these languages look like?

– whatever property defines whether w is in L can’t be computable
• there is no Turing machine (or computer program) that tests whether w

has the property

CPSC 229: Foundations of Computation • Spring 2024 27

Symbolic Representation of Turing Machines

• consider a Turing machine M
•

• we can assume, without loss of generality –
– q is the start state, h is the halt state, and the other states are

named q’, q’’, q’’’, …
– the symbols are 0, 1, a, # (blank) with auxiliary symbols a’, a’’,

a’’’, …

• call such a Turing machine a standard Turing machine

• M can be represented with a string of symbols from the
alphabet { h, q, L, R, #, 0, 1, a, ‘, $ }
– the transition rule δ(q’’,0) = (a’’’,L,q) is encoded as q’’0a’’’Lq
– encode a complete machine by listing the transition rules,

separated by $
without loss of generality (w.l.o.g.) – this assumption does not
limit what we can consider because states and symbols can
be renamed without changing the machine’s function

CPSC 229: Foundations of Computation • Spring 2024 28

A Turing Machine Generator

• not every string involving the alphabet { h, q, L, R, #, 0, 1, a, ‘,
$ } is an encoded standard Turing machine
– but whether or not w is an encoded Turing machine can be checked

• a list of all strings encoding standard Turing machines can be
generated –
– generate all strings over { h, q, L, R, #, 0, 1, a, ‘, $ }
– for each string w, check if it encodes a Turing machine
– if so, add w to the output list

• the symbolic representation of standard Turing machines is a
recursively enumerable set
– let T

i
 be the machine encoded by the ith string produced

– given n ∈ ℕ, the symbolic representation for T
n
 can be found by

repeating the process n+1 times

• let G be a Turing machine which, when run with input an, halts
with the encoding of T

n

CPSC 229: Foundations of Computation • Spring 2024 29

Universal Turing Machine

• the universal Turing machine U simulates the
computation of any standard Turing machine T on any
input w

– (the symbolic representation of) T and w are written on U’s tape
– U keeps track of T’s state and position

• T’s state is written after w on the tape
• use a special symbol @ to the left of the current symbol in w to denote the

current position

– U’s operation
• write @ at the beginning of w and q after w
• for each step in the computation of T

– determine the current state and symbol for T
– locate a transition rule that applies in this case
– update the representation of T’s state, position, and tape to reflect applying

the transition
– if the new state is h, halt

– observation: U halts if and only if T halts on input w

CPSC 229: Foundations of Computation • Spring 2024 30

