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• idea of proof
– grammar → Turing acceptable

• M generates every string derivable from the start symbol S – 
– start with w$S on the tape
– repeatedly

» for each string on the tape and each production x → y, if x occurs in the 
string, append $ to the end of the tape and copy the string, replacing x 
with y

» compare the new string to w, halting if they match
• if w ∈ L, eventually M will produce it and halt
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• idea of proof
– Turing acceptable → grammar

• idea: build a grammar whose rules simulate the steps of M

• let the terminal symbols of G be the symbols from Σ
• let the non-terminal symbols of G be the states of M, the 

alphabet symbols not in Σ, <, >, S, A

• produce any string of the form <q0a
n>

– represents a configuration of M with M in its start state, 
positioned at the beginning of a string of n a’s

• capture transition δ(q
i
,s) = (τ,R,q

j
)

• capture transition δ(qi,s) = (τ,L,qj), for each of the        
alphabet symbols λ

• add and remove blanks from the end of the current portion 
of the tape as needed

• clean up when M has halted
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• L is Turing-decidable if and only if both L and its 
complement are Turing-acceptable

– idea of proof, only if direction (acceptable → decidable) – 
• let M be a Turing machine accepting L and M’ be a Turing machine 

accepting L’s complement
• build T to decide L

– simulate both M and M’ on w one step at a time, halting with output 1 if M 
terminates and output 0 if M’ terminates

– if L and L’s complement are both Turing-acceptable, either M or M’ will halt on 
w and thus T halts on w

– idea of proof, if direction (decidable → acceptable)
• let M be a Turing machine deciding L
• build T to accept L

– simulate M on w, then halt with output 1 if M halts with output 1 or go into an 
infinite loop if M halts with output 0

• build T’ to accept the complement of L
– simulate M on w, then halt with output 1 if M halts with output 0 or go into an 

infinite loop if M halts with output 1
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• this can be generalized to other models of computation – 

– recursively enumerable is a synonym for Turing-acceptable 
(Thm 5.1)

– recursive is a synonym for Turing-decidable
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Computable Languages

• recursively enumerable languages are languages that can 
be defined by computation

• so far, every computational method developed for 
specifying languages produces only recursively 
enumerable languages

• yet, most languages are not recursively enumerable
– there are uncountably many languages over a particular 

alphabet
– there are only countably many recursively enumerable 

languages over the same alphabet
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Uncomputable Languages

• most languages are not recursively enumerable

• what do these languages look like?

– whatever property defines whether w is in L can’t be computable
• there is no Turing machine (or computer program) that tests whether w 

has the property
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Symbolic Representation of Turing Machines

• consider a Turing machine M
•

• we can assume, without loss of generality – 
– q is the start state, h is the halt state, and the other states are 

named q’, q’’, q’’’, …
– the symbols are 0, 1, a, # (blank) with auxiliary symbols a’, a’’, 

a’’’, …

• call such a Turing machine a standard Turing machine

• M can be represented with a string of symbols from the 
alphabet { h, q, L, R, #, 0, 1, a, ‘, $ }
– the transition rule δ(q’’,0) = (a’’’,L,q) is encoded as q’’0a’’’Lq
– encode a complete machine by listing the transition rules, 

separated by $
without loss of generality (w.l.o.g.) – this assumption does not 
limit what we can consider because states and symbols can 
be renamed without changing the machine’s function
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A Turing Machine Generator

• not every string involving the alphabet { h, q, L, R, #, 0, 1, a, ‘, 
$ } is an encoded standard Turing machine
– but whether or not w is an encoded Turing machine can be checked

• a list of all strings encoding standard Turing machines can be 
generated –
– generate all strings over { h, q, L, R, #, 0, 1, a, ‘, $ }
– for each string w, check if it encodes a Turing machine
– if so, add w to the output list

• the symbolic representation of standard Turing machines is a 
recursively enumerable set
– let T

i
 be the machine encoded by the ith string produced

– given n ∈ ℕ, the symbolic representation for T
n
 can be found by 

repeating the process n+1 times

• let G be a Turing machine which, when run with input an, halts 
with the encoding of T

n
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Universal Turing Machine

• the universal Turing machine U simulates the 
computation of any standard Turing machine T on any 
input w

– (the symbolic representation of) T and w are written on U’s tape
– U keeps track of T’s state and position

• T’s state is written after w on the tape
• use a special symbol @ to the left of the current symbol in w to denote the 

current position

– U’s operation
• write @ at the beginning of w and q after w
• for each step in the computation of T

– determine the current state and symbol for T
– locate a transition rule that applies in this case
– update the representation of T’s state, position, and tape to reflect applying 

the transition
– if the new state is h, halt

– observation: U halts if and only if T halts on input w
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