Theorem 5.4. Let T_0, T_1, T_2, \ldots , be the standard Turing machines, as described above. Let K be the language over the alphabet $\{a\}$ defined by

 $K = \{a^n \mid T_n \text{ halts when run with input } a^n\}.$

Then K is a recursively enumerable language, but K is not recursive. The complement

 $\overline{K} = \{a^n \mid T_n \text{ does not halt when run with input } a^n\}.$

is a language that is not recursively enumerable.

$K = \{a^n \mid T_n \text{ halts when run with input } a^n\}.$

- <u>K is not recursive</u> because there's not a Turing machine M which decides it –
 - let *H* be any Turing machine

CPSC 229: Foundations of Computation • Spring 2024

- let M be a Turing machine which does the same thing as H until H halts (if H halts)
 - if H halts with output 1, M goes into an infinite loop
 - otherwise (any other output) M halts
- − assume, without loss of generality, that *M* is a standard Turing machine i.e. $M = T_n$ for some $n \in \mathbb{N}$
- run $M = T_n$ on input a^n
 - if H halts with output 1 on input a^n , T_n doesn't halt on input a^n
 - if H halts with output 0 on input a^n , T_n halts on input a^n
 - (what happens with other output or if *H* doesn't halt doesn't matter)
- we need to show that *H* doesn't decide *K*
- if *H* decides *K*, running *H* on a^n means that it should halt with output 1 if $a^n \in K$, that is, T_n halts when run with input a^n , and output 0 if $a^n \notin K$, that is, T_n doesn't halt when run with input a^n
- but that's not what happens H doesn't give the right answer, and so a Turing machine H that decides K doesn't exist

- <u>K is recursively enumerable</u> because there's a Turing machine M which accepts it –
 - let M be a Turing machine which, given input aⁿ
 - copies the input and runs G on the first copy of aⁿ, producing a symbolic description of the Turing machine T_n
 - runs U to simulate the computation of T_n on (the second copy of) input a^n
 - this simulation ends if and only if T_n halts when run with input a^n i.e. $a^n \in K$

Theorem 5.4. Let T_0, T_1, T_2, \ldots , be the standard Turing machines, as described above. Let K be the language over the alphabet $\{a\}$ defined by

 $K = \{a^n \mid T_n \text{ halts when run with input } a^n\}.$

Then K is a recursively enumerable language, but K is not recursive. The complement

 $\overline{K} = \{a^n \mid T_n \text{ does not halt when run with input } a^n\}.$

is a language that is not recursively enumerable.

CPSC 229: Foundations of Computation • Spring 2024

\overline{K} is not recursively enumerable because if both K and \overline{K} were, K would be recursive

Theorem 5.3. Let Σ be an alphabet and let L be a language over Σ . Then L is recursive if and only if both L and its complement, $\Sigma^* \setminus L$, are recursively enumerable.

The Halting Problem

$K = \{a^n \mid T_n \text{ halts when run with input } a^n\}.$

- deciding K is known as the halting problem
- no Turing machine and thus no computer program can solve this problem
 - it is computationally unsolvable
 - note that this doesn't mean that no instances of the problem can be solved, just that no Turing machine (or program) can produce the correct answer in all cases
- the halting problem is not the only computationally unsolvable problem
 - e.g. does a particular Turing machine halt for all possible inputs?
 - e.g. does a program halt with a particular input?
 - e.g. are two Turing machines (or programs) equivalent, that is, do they produce the same output for each possible input?
 - e.g. will a particular Turing machine halt if started with a blank tape?