

CPSC 229: Foundations of Computation • Spring 2024 31 CPSC 229: Foundations of Computation • Spring 2024 32

• K is recursively enumerable because there’s a Turing
machine M which accepts it –

– let M be a Turing machine which, given input an –
• copies the input and runs G on the first copy of an, producing a symbolic

description of the Turing machine T
n

• runs U to simulate the computation of T
n
 on (the second copy of) input an

– this simulation ends if and only if T
n
 halts when run with input an

i.e. an ∈ K

CPSC 229: Foundations of Computation • Spring 2024 33

• K is not recursive because there’s not a Turing machine M
which decides it –
– let H be any Turing machine
– let M be a Turing machine which does the same thing as H until H

halts (if H halts)
• if H halts with output 1, M goes into an infinite loop
• otherwise (any other output) M halts

– assume, without loss of generality, that M is a standard Turing
machine i.e. M = T

n
 for some n ∈ ℕ

– run M = Tn on input an –
• if H halts with output 1 on input an, T

n
 doesn’t halt on input an

• if H halts with output 0 on input an, T
n
 halts on input an

• (what happens with other output or if H doesn’t halt doesn’t matter)

– we need to show that H doesn’t decide K
• if H decides K, running H on an means that it should halt with output 1 if an

∈ K, that is, T
n
 halts when run with input an, and output 0 if an ∉ K, that is,

T
n
 doesn’t halt when run with input an

• but that’s not what happens – H doesn’t give the right answer, and so a
Turing machine H that decides K doesn’t exist

CPSC 229: Foundations of Computation • Spring 2024 34

• K is not recursively enumerable because if both K and K
were, K would be recursive

CPSC 229: Foundations of Computation • Spring 2024 35

The Halting Problem

• deciding K is known as the halting problem

• no Turing machine – and thus no computer program –
can solve this problem
– it is computationally unsolvable
– note that this doesn’t mean that no instances of the problem can

be solved, just that no Turing machine (or program) can produce
the correct answer in all cases

• the halting problem is not the only computationally
unsolvable problem
– e.g. does a particular Turing machine halt for all possible inputs?
– e.g. does a program halt with a particular input?
– e.g. are two Turing machines (or programs) equivalent, that is,

do they produce the same output for each possible input?
– e.g. will a particular Turing machine halt if started with a blank

tape?

