Suppose that $a_{1}, a_{2}, \ldots, a_{10}$ are real numbers, and suppose that $a_{1}+a_{2}+\ldots+a_{10}>100$. Use a proof by contradiction to conclude that at least one of the numbers a_{i} must be greater than 10 .

Answer:
Proof. Assume $a_{1}+a_{2}+\ldots+a_{10}>100$. For a proof by contradiction, also assume $\neg \exists i\left(a_{i}>10\right)$.

$$
\neg \exists i\left(a_{i}>10\right) \equiv \forall i\left(a_{i} \leq 10\right)
$$

If all of the $a_{i} \leq 10$, then $a_{1}+\ldots a_{10} \leq 100$. But this contradicts the premise that the sum is greater than 100. Thus the assumption $\neg \exists i\left(a_{i}>10\right)$ was invalid, and it is the case that $\exists i\left(a_{i}>10\right)$ i.e. at least one of the a_{i} must be greater than 10 .

Discussion:

The goal is to show

$$
a_{1}+a_{2}+\ldots+a_{10}>100 \rightarrow \exists i\left(a_{i}>10\right)
$$

We assume the left side $\left(a_{1}+a_{2}+\ldots+a_{10}>100\right)$ and want to show the right side; a proof by contradiction says to then assume the opposite. So we also assume $\neg \exists i\left(a_{i}>10\right)$.

Simplify:

$$
\begin{aligned}
\neg \exists i\left(a_{i}>10\right) & \equiv \forall i \neg\left(a_{i}>10\right) \\
& \equiv \forall i\left(a_{i} \leq 10\right)
\end{aligned}
$$

The goal with proof by contradiction is to show a false statement, typically by deriving $\neg q$ for some premise q. Our premise is $a_{1}+a_{2}+\ldots+a_{10}>100$, so let's consider what we know about the sum in light of the assumption that $\forall i\left(a_{i} \leq 10\right)$.

If all of the a_{i} are less than or equal to 10 , the sum of 10 of them is going to be less than or equal to 100 . But that contradicts the premise that the sum is greater than 100.

Let n be an integer. If n^{2} is an even integer, then n is an even integer.

Answer:

Proof. Assume n^{2} is an even integer. For a proof by contradiction, also assume that n is an odd integer.

By the definitions of odd numbers and evenly divisible, $n=2 k+1$ for some integer k.

$$
\begin{aligned}
n^{2} & =(2 k+1)^{2} \\
& =4 k^{2}+4 k+1 \\
& =2\left(2 k^{2}+2 k\right)+1
\end{aligned}
$$

$2\left(2 k^{2}+2 k\right)+1$ is odd, because 2 times anything is even, and so n^{2} is odd. But this contradicts the premise that n^{2} is even, so we conclude that the assumption that n is odd is invalid and thus if n^{2} is an even integer, n is also an even integer.

Discussion:
The goal is to show

$$
n^{2} \text { is an even integer } \rightarrow \mathrm{n} \text { is an even integer }
$$

We assume the left side (n^{2} is an even integer) and want to show the right side; a proof by contradiction says to then assume the opposite. So we also assume that n is an odd integer.

Thus, by the definitions of odd numbers and evenly divisible, $n=2 k+1$ for some integer k. Since we want to show a contradiction with respect to the premise that n^{2} is an even integer, we consider what that means for n^{2}.

$$
\begin{aligned}
n^{2} & =(2 k+1)^{2} \\
& =4 k^{2}+4 k+1 \\
& =2\left(2 k^{2}+2 k\right)+1
\end{aligned}
$$

$2\left(2 k^{2}+2 k\right)+1$ is odd, because 2 times anything is even, and so n^{2} is odd. This is a contradiction, and we conclude that if n^{2} is an even integer, n is also an even integer.

