What language does the following DFA accept?

Answer: $L(M)=L\left(\left(a^{*}|b a| b b a\right)^{*}(\epsilon|b| b b)\right)=\left\{x \in\{a, b\}^{*} \mid x\right.$ doesn't contain $\left.b b b\right\}$
Discussion: For the sake of discussion, let's label the states from left to right as q_{0}, q_{1}, q_{2}, and q_{3}.

Consider the situation if just the start state q_{0} is an accepting state. Observe that for any $w \in L\left(a^{*}|b a| b b a\right), \delta^{*}\left(q_{0}, w\right)=q_{0}$ - starting from q_{0}, the strings $b a, b b a$, and any string with only as will end up back at q_{0}. Thus this modified DFA accepts $L\left(\left(a^{*}|b a| b b a\right)^{*}\right)$.

Now consider the DFA as written. From q_{0}, ϵ, b, and $b b$ will get to an accepting state - this is how accepted strings can end. Putting this all together, $L(M)=$ $L\left(\left(a^{*}|b a| b b a\right)^{*}(\epsilon|b| b b)\right)$ - or strings which don't contain $b b b$.

Another way of arriving at an English description of the language is to observe that there is a trap state and that $b b b$ gets from q_{0} to the trap state. Since everything else is an accepting state, strings containing $b b b$ are the only things not accepted by this DFA.

Give a DFA that accepts the language $\{x \mid x$ contains the substring $a b a\}$.
Answer:

Discussion: An observation here is that there is a particular substring - $a b a$ - that the language needs to accept. This lets us start with

(For the sake of discussion, let's label the states from left to right as q_{0}, q_{1}, q_{2}, and q_{3}.) q_{0} reflects none of $a b a$ being matched so far, q_{1} means we have a, q_{2} means we have $a b$, and q_{3} means we have $a b a$.

Next, consider what can come before and after the $a b a$ - any number of a s and b s (including 0), in any order.

...but this isn't a valid DFA - q_{0} has two transitions for a, and several transitions are missing. (The latter is OK if those transitions would lead to a trap state.) To deal with the two a transitions from q_{0}, consider what the a, b self-loop accomplishes: it matches any combination of a s and $b s$ occurring before the $a b a$. Thus if we follow the a transition from q_{0} to q_{1} and then get another a, we should stay in q_{1} - the new a is now the beginning of $a b a$. If we get a b in q_{2}, however, we have to start over - the symbols immediately before this b were $a b$, so another b no longer matches any part of $a b a$.

Give a DFA that accepts the language $L\left(a a^{*} \mid a b a^{*} b^{*}\right)$.
Answer:

Discussion: there are two separate patterns here - $a a^{*}$ and $a b a^{*} b^{*}$. So try drawing a separate DFA for each pattern.

Again label the states q_{0}, q_{1}, q_{2}, etc from left to right. On the top, q_{0} is "seen nothing", q_{1} is a, q_{2} is $a b a^{*}$, and q_{3} is $a b a^{*} b b^{*}$. On the bottom, q_{0} is "seen nothing" and q_{1} is "at least one a ".

Now, merge the DFAs. Start by merging the q_{0} states:

Since there are now two transitions for a from q_{0}, also merge the q_{1} states:

This is now a valid DFA (with the omission of transitions that would lead to a trap state), but does it accept the right language? Working forwards from the start state, it accepts strings matching $a, a a^{*}, a a^{*} b, \ldots$ However, $a a^{*} b$ is not valid - if a string starts with $a a$ instead of $a b$, it can only have a s after that. So getting an a in q_{1} requires a new state. (This can also be seen because the original q_{1} s had different meanings $-a$ vs "at least one a ".)

