What language does the following DFA accept?

Answer: $L(M) = L((a^*|ba|bba)^*(\epsilon|b|bb)) = \{x \in \{a, b\}^* \mid x \text{ doesn't contain } bbb\}$

Discussion: For the sake of discussion, let's label the states from left to right as q_0 , q_1 , q_2 , and q_3 .

Consider the situation if just the start state q_0 is an accepting state. Observe that for any $w \in L(a^*|ba|bba)$, $\delta^*(q_0, w) = q_0$ — starting from q_0 , the strings ba, bba, and any string with only as will end up back at q_0 . Thus this modified DFA accepts $L((a^*|ba|bba)^*)$.

Now consider the DFA as written. From q_0 , ϵ , b, and bb will get to an accepting state — this is how accepted strings can end. Putting this all together, $L(M) = L((a^*|ba|bba)^*(\epsilon|b|bb))$ — or strings which don't contain bbb.

Another way of arriving at an English description of the language is to observe that there is a trap state and that bbb gets from q_0 to the trap state. Since everything else is an accepting state, strings containing bbb are the only things *not* accepted by this DFA.

Give a DFA that accepts the language $\{x \mid x \text{ contains the substring } aba\}$.

Answer:

Discussion: An observation here is that there is a particular substring -aba — that the language needs to accept. This lets us start with

(For the sake of discussion, let's label the states from left to right as q_0 , q_1 , q_2 , and q_3 .) q_0 reflects none of *aba* being matched so far, q_1 means we have a, q_2 means we have ab, and q_3 means we have aba.

Next, consider what can come before and after the aba — any number of as and bs (including 0), in any order.

...but this isn't a valid DFA — q_0 has two transitions for a, and several transitions are missing. (The latter is OK if those transitions would lead to a trap state.) To deal with the two a transitions from q_0 , consider what the a, b self-loop accomplishes: it matches any combination of as and bs occurring before the aba. Thus if we follow the a transition from q_0 to q_1 and then get another a, we should stay in q_1 — the new ais now the beginning of aba. If we get a b in q_2 , however, we have to start over — the symbols immediately before this b were ab, so another b no longer matches any part of aba.

Give a DFA that accepts the language $L(aa^*|aba^*b^*)$.

Answer:

Discussion: there are two separate patterns here $-aa^*$ and aba^*b^* . So try drawing a separate DFA for each pattern.

Again label the states q_0 , q_1 , q_2 , etc from left to right. On the top, q_0 is "seen nothing", q_1 is a, q_2 is aba^* , and q_3 is aba^*bb^* . On the bottom, q_0 is "seen nothing" and q_1 is "at least one a".

Now, merge the DFAs. Start by merging the q_0 states:

Since there are now two transitions for a from q_0 , also merge the q_1 states:

This is now a valid DFA (with the omission of transitions that would lead to a trap state), but does it accept the right language? Working forwards from the start state, it accepts strings matching a, aa^*, aa^*b, \ldots . However, aa^*b is not valid — if a string starts with aa instead of ab, it can only have as after that. So getting an a in q_1 requires a new state. (This can also be seen because the original q_1s had different meanings — a vs "at least one a".)

