What language does the following DFA accept?

Answer: $L(M)=L\left(\left(a a^{*} b \mid b b^{*} a\right)(a \mid b)^{*}\right)=\left\{x \in\{a, b\}^{*} \mid x\right.$ contains $a b$ or $\left.b a\right\}$
Discussion: There are two routes from the start state to the accepting state - the upper path matches strings of the form $a a^{*} b$ and the lower path matches strings of the form $b b^{*} a$. Once in the accepting state, any number of $a s$ and $b \mathrm{~s}$ can follow.

Give a DFA that accepts the language $\{x \mid x$ does not contain substring $a b b\}$.
Answer:

Discussion: If the task was to accept strings containing $a b b$, we'd start with the following:

However, since only strings not containing $a b b$ are accepted, q_{3} must be a trap state instead of an accepting state and the other states should be accepting states.

This isn't yet a complete DFA since there are missing transitions that don't necessary go to trap states. As those are considered, it is useful to keep in mind what each of the states represent: q_{0} is "no part of $a b b$ has been seen", q_{1} is "the last thing seen is a ", q_{2} is "the last thing seen is $a b$ " and q_{3} is "have seen $a b b$ ".

Give a DFA that accepts the language $\left\{x \mid n_{a}(x)+n_{b}(x)\right.$ is even $\}$.
Answer:

Discussion: First notice that since the alphabet contains only a and $b, n_{a}(x)+n_{b}(x)$ is even means that $|x|$ is even.

So, we need a start state. And since 0 is an even length, ϵ should be accepted and thus q_{0} should be an accepting state.

Now, what happens with the next symbol? Whether a or b, a single symbol means that $|x|$ is odd.

Then, another single symbol in state q_{1}, where $|x|$ is odd, means that $|x|$ is even.

Give a DFA that accepts the language $\left\{x \mid n_{a}(x)\right.$ is even and $n_{b}(x)$ is even $\}$.
Answer:

Discussion: In the previous example, the two possibilities for $|x|$ were that $|x|$ is even and $|x|$ is odd, which corresponds to the two states in the DFA. In this case, there are four possibilities - let q_{0} represent $n_{a}(x)$ even and $n_{b}(x)$ even, q_{1} represent $n_{a}(x)$ odd and $n_{b}(x)$ even, q_{2} represent $n_{a}(x)$ even and $n_{b}(x)$ odd, q_{3} represent $n_{a}(x)$ odd and $n_{b}(x)$ odd. Then fill in the transitions from each state to the correct next state.

