Corrections —

The original version said n not divisible by 3 meant that n = 2k + 1 or n = 2k + 2.

An integer n is **divisible by** m iff n = mk for some integer k. (This can also be expressed by saying that m evenly divides n.) So for example, n is divisible by 2 iff n = 2k for some integer k; n is divisible by 3 iff n = 3k for some integer k, and so on. Note that if n is not divisible by 2, then n must be 1 more than a multiple of 2 so n = 2k + 1 for some integer k. Similarly, if n is not divisible by 3 then n must be 1 or 2 more than a multiple of 3, so n = 3k + 1 or n = 3k + 2 for some integer k.

The original version incorrectly listed 10, 11, 12, etc as hexadecimal values instead of A, B, C, etc.

hexadecimal	binary	hexadecimal	binary
0	0000	8	1000
1	0001	9	1001
2	0010	А	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	Е	1110
7	0111	F	1111

A \neg was left out in the third premise.

5. [12 points] Give a formal proof that the following argument is valid. Be sure to state a reason for each step in the proof. (If the rule you are using isn't named, write "unnamed rule".)

$$\begin{array}{c} A \to C \\ C \to B \\ \neg B \land D \\ E \lor A \\ E \land F \to G \\ F \end{array}$$

While not strictly necessary, adding parens around the $\forall y F(y, x)$ in part (d) adds clarity.

6. [12 points] Consider the following propositions, where the domain of discourse in all cases is the set of people:

S(x) stands for "x is successful" K(x) stands for "x is kind" F(x, y) stands for "x is friends with y"

(d) Express the proposition $\neg \exists x ((\forall y F(y, x)) \rightarrow S(x))$ as a sentence in natural English.