Corrections -

The original version said n not divisible by 3 meant that $n=2 k+1$ or $n=2 k+2$.
An integer n is divisible by m iff $n=m k$ for some integer k. (This can also be expressed by saying that m evenly divides n.) So for example, n is divisible by 2 iff $n=2 k$ for some integer k; n is divisible by 3 iff $n=3 k$ for some integer k, and so on. Note that if n is not divisible by 2 , then n must be 1 more than a multiple of 2 so $n=2 k+1$ for some integer k. Similarly, if n is not divisible by 3 then n must be 1 or 2 more than a multiple of 3 , so $n=3 k+1$ or $n=3 k+2$ for some integer k.

The original version incorrectly listed $10,11,12$, etc as hexadecimal values instead of A, B, C, etc.

hexadecimal	binary	hexadecimal	binary
0	0000	8	1000
1	0001	9	1001
2	0010	A	1010
3	0011	B	1011
4	0100	C	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

A \neg was left out in the third premise.
5. [12 points] Give a formal proof that the following argument is valid. Be sure to state a reason for each step in the proof. (If the rule you are using isn't named, write "unnamed rule".)
$A \rightarrow C$
$C \rightarrow B$
$\neg B \wedge D$
$E \vee A$
$E \wedge F \rightarrow G$
F
$\therefore G$

While not strictly necessary, adding parens around the $\forall y F(y, x)$ in part (d) adds clarity.
6. [12 points] Consider the following propositions, where the domain of discourse in all cases is the set of people:
$S(x)$ stands for " x is successful"
$K(x)$ stands for " x is kind"
$F(x, y)$ stands for " x is friends with y "
(d) Express the proposition $\neg \exists x((\forall y F(y, x)) \rightarrow S(x))$ as a sentence in natural English.

