
CPSC 229, Spring 2024

Identify the language generated by the following context-free grammar.

S −→ aaSb

S −→ ε

Answer: {a2nbn | n ≥ 0}, or as followed by bs with twice as many as as bs.

Discussion: It can be possible to just reason about the rules, but starting to method-
ically generate the strings of the language can help reveal patterns that can then be
concisely described.

Start with the start symbol: S.
There are two productions that can be applied: S → aaSb and S → ε. Given these

rules, we can conclude

S =⇒ aaSb (using S → aaSb)

S =⇒ ε (using S → ε)

ε doesn’t contain any terminal symbols (it doesn’t contain any symbols at all), so
it is one of the strings generated by this grammar.

Continue with aaSb — this contains an S, and there are two productions that can
be applied.

aaSb =⇒ aaaaSbb (using S → aaSb)

aaSb =⇒ aab (using S → ε)

aab is a second string in the language. Keep going:

aaaaSbb =⇒ aaaaaaSbbb (using S → aaSb)

aaaaSbb =⇒ aaaabb (using S → ε)

aaaabb is a third string in the language.
At some point, it should become clear that we are getting strings of the form a2nbn

for n ≥ 0. (This can also be reasoned — each application of the rule S −→ aaSb
results in two as and one b, and the final step using the rule S −→ ε doesn’t change
the number of as and bs.)



CPSC 229, Spring 2024

Identify the language generated by the following context-free grammar.

S −→ aSb

S −→ aaSb

S −→ ε

Answer: {ambn | n ≥ 0 and n ≤ m ≤ 2n}, or as followed by bs where there are at least
as many as as bs but not more than twice as many.

Discussion: Given the previous example, we might be able to reason directly that
there’s always one S and depending on the choice of production when we replace S,
we get one b and one or two as — that means at most we’ll get twice as many as (if
S −→ aaSb is always used until the final step) and at least the same number of as as
bs (if S −→ aSb is always used until the final step).

But it is also possible to use the same enumeration approach —

S =⇒ aSb (using S → aSb)

S =⇒ aaSb (using S → aaSb)

S =⇒ ε (using S → ε)

Then continue with both aSb and aaSb:

aSb =⇒ aaSbb (using S → aSb)

aSb =⇒ aaaSbb (using S → aaSb)

aSb =⇒ ab (using S → ε)

aaSb =⇒ aaaSbb (using S → aSb)

aaSb =⇒ aaaaSbb (using S → aaSb)

aaSb =⇒ aab (using S → ε)

And so forth until the pattern becomes apparent.



CPSC 229, Spring 2024

Identify the language generated by the following context-free grammar.

S −→ TS

S −→ ε

T −→ aTb

T −→ ε

Answer: the set of strings where each maximal stretch of as is followed by the same
number of bs — ambmanbnapbp . . . where m,n, p, . . . ≥ 0.

Discussion: As the grammars get larger, methodically deriving enough strings to spot
patterns gets more difficult (and more time-consuming). So we might try reasoning.

Consider first the T rules — these have a similar pattern to the rules in the previous
examples, and we can observe that starting with a T ultimately results in a string of
the form anbn for n ≥ 0 (and the intermediate form is anTbn — only one non-terminal,
and it is a T ).

Now, consider S. Starting from S results in zero or more T s: S =⇒ TS =⇒
TTS =⇒ TTTS and so forth. Since each T then turns into anbn, the result is the
set of strings where each maximal stretch of as is followed by the same number of bs.
(“Maximal” is this context means that the string of as can’t get bigger by adding more
to it — it is bounded on either side by the beginning of the string or a b.)



CPSC 229, Spring 2024

Find a context-free grammar that generates the language {anbm | n ≥ m > 0}.

Answer:

S −→ aSb

S −→ aS

S −→ ab

Discussion: This language is strings of as followed by bs, where there are at least as
many as as bs.

Let’s start with a grammar that produces strings as followed by bs where there are
the same number of as and bs — that’s not so different from parts of the examples
above.

S −→ aSb

S −→ ε

But this isn’t quite right for our needs — m > 0, so there needs to be at least one
b (and thus also at least one a). S =⇒ ε is the problem here, so substitute the actual
shortest legal string for ε.

S −→ aSb

S −→ ab

Check that this produces {ambm | m > 0}.
So now we need a way to add extra as. Make sure they go before any bs. (Why

wouldn’t S −→ Sa work?)

S −→ aSb

S −→ aS

S −→ ab

Try methodically generating the strings that this produces, for practice with that
skill and well as a check on the reasoning done.


