Identify the language generated by the following context-free grammar.

$$
\begin{aligned}
& S \longrightarrow a a S b \\
& S \longrightarrow \epsilon
\end{aligned}
$$

Answer: $\left\{a^{2 n} b^{n} \mid n \geq 0\right\}$, or a s followed by b s with twice as many a as b s.
Discussion: It can be possible to just reason about the rules, but starting to methodically generate the strings of the language can help reveal patterns that can then be concisely described.

Start with the start symbol: S.
There are two productions that can be applied: $S \rightarrow a a S b$ and $S \rightarrow \epsilon$. Given these rules, we can conclude

$$
\begin{array}{ll}
S \Longrightarrow a a S b & (\text { using } S \rightarrow a a S b) \\
S \Longrightarrow \epsilon & (\text { using } S \rightarrow \epsilon)
\end{array}
$$

ϵ doesn't contain any terminal symbols (it doesn't contain any symbols at all), so it is one of the strings generated by this grammar.

Continue with $a a S b$ - this contains an S, and there are two productions that can be applied.

$$
\begin{array}{ll}
a a S b \Longrightarrow a a a a S b b & (\text { using } S \rightarrow a a S b) \\
a a S b \Longrightarrow a a b & (\text { using } S \rightarrow \epsilon)
\end{array}
$$

$a a b$ is a second string in the language. Keep going:

$$
\begin{array}{ll}
a a a a S b b \Longrightarrow a a a a a a S b b b & (\text { using } S \rightarrow a a S b) \\
a a a a S b b \Longrightarrow a a a a b b & (\operatorname{using} S \rightarrow \epsilon)
\end{array}
$$

$a a a a b b$ is a third string in the language.
At some point, it should become clear that we are getting strings of the form $a^{2 n} b^{n}$ for $n \geq 0$. (This can also be reasoned - each application of the rule $S \longrightarrow a a S b$ results in two as and one b, and the final step using the rule $S \longrightarrow \epsilon$ doesn't change the number of $a s$ and $b \mathrm{~s}$.)

Identify the language generated by the following context-free grammar.

$$
\begin{aligned}
& S \longrightarrow a S b \\
& S \longrightarrow a a S b \\
& S \longrightarrow \epsilon
\end{aligned}
$$

Answer: $\left\{a^{m} b^{n} \mid n \geq 0\right.$ and $\left.n \leq m \leq 2 n\right\}$, or a s followed by bs where there are at least as many as as bs but not more than twice as many.

Discussion: Given the previous example, we might be able to reason directly that there's always one S and depending on the choice of production when we replace S, we get one b and one or two a - that means at most we'll get twice as many as (if $S \longrightarrow a a S b$ is always used until the final step) and at least the same number of a as $b \mathrm{~s}$ (if $S \longrightarrow a S b$ is always used until the final step).

But it is also possible to use the same enumeration approach -

$$
\begin{array}{ll}
S \Longrightarrow a S b & \text { (using } S \rightarrow a S b) \\
S \Longrightarrow a a S b & \text { (using } S \rightarrow a a S b) \\
S \Longrightarrow \epsilon & (\text { using } S \rightarrow \epsilon)
\end{array}
$$

Then continue with both $a S b$ and $a a S b$:

$$
\begin{aligned}
a S b & \Longrightarrow a a S b b \\
a S b & (u \operatorname{sing} S \rightarrow a S b) \\
a S b & \Longrightarrow a b \\
a a S b b & (u \operatorname{sing} S \rightarrow a a S b) \\
a a S b & \Longrightarrow a a a S b b \\
a a S b & (u \operatorname{sing} S \rightarrow a S b) \\
a a S b & \Longrightarrow a a a a S b b \\
& (u \operatorname{sing} S \rightarrow a a S b) \\
& (\text { using } S \rightarrow \epsilon)
\end{aligned}
$$

And so forth until the pattern becomes apparent.

Identify the language generated by the following context-free grammar.

$$
\begin{aligned}
& S \longrightarrow T S \\
& S \longrightarrow \epsilon \\
& T \longrightarrow a T b \\
& T \longrightarrow \epsilon
\end{aligned}
$$

Answer: the set of strings where each maximal stretch of a s is followed by the same number of $b \mathrm{~s}-a^{m} b^{m} a^{n} b^{n} a^{p} b^{p} \ldots$ where $m, n, p, \ldots \geq 0$.

Discussion: As the grammars get larger, methodically deriving enough strings to spot patterns gets more difficult (and more time-consuming). So we might try reasoning.

Consider first the T rules - these have a similar pattern to the rules in the previous examples, and we can observe that starting with a T ultimately results in a string of the form $a^{n} b^{n}$ for $n \geq 0$ (and the intermediate form is $a^{n} T b^{n}$ - only one non-terminal, and it is a T).

Now, consider S. Starting from S results in zero or more $T \mathrm{~s}: ~ S \Longrightarrow T S \Longrightarrow$ $T T S \Longrightarrow T T T S$ and so forth. Since each T then turns into $a^{n} b^{n}$, the result is the set of strings where each maximal stretch of $a s$ is followed by the same number of $b s$. ("Maximal" is this context means that the string of $a s$ can't get bigger by adding more to it - it is bounded on either side by the beginning of the string or a b.)

Find a context-free grammar that generates the language $\left\{a^{n} b^{m} \mid n \geq m>0\right\}$.
Answer:

$$
\begin{aligned}
& S \longrightarrow a S b \\
& S \longrightarrow a S \\
& S \longrightarrow a b
\end{aligned}
$$

Discussion: This language is strings of as followed by $b \mathrm{~s}$, where there are at least as many as as b s.

Let's start with a grammar that produces strings a s followed by b s where there are the same number of a s and $b s$ - that's not so different from parts of the examples above.

$$
\begin{aligned}
& S \longrightarrow a S b \\
& S \longrightarrow \epsilon
\end{aligned}
$$

But this isn't quite right for our needs - $m>0$, so there needs to be at least one b (and thus also at least one a). $S \Longrightarrow \epsilon$ is the problem here, so substitute the actual shortest legal string for ϵ.

$$
\begin{aligned}
& S \longrightarrow a S b \\
& S \longrightarrow a b
\end{aligned}
$$

Check that this produces $\left\{a^{m} b^{m} \mid m>0\right\}$.
So now we need a way to add extra as. Make sure they go before any bs. (Why wouldn't $S \longrightarrow S a$ work?)

$$
\begin{aligned}
& S \longrightarrow a S b \\
& S \longrightarrow a S \\
& S \longrightarrow a b
\end{aligned}
$$

Try methodically generating the strings that this produces, for practice with that skill and well as a check on the reasoning done.

