CPSC 229, Spring 2024

Find a context-free grammar that generates the language $\left\{a^{n} b^{m} \mid n \geq 0 \wedge m=n+1\right\}$. Answer:

$$
\begin{aligned}
& S \longrightarrow a S b \\
& S \longrightarrow b
\end{aligned}
$$

Discussion: This language consists of strings of a s followed by b s, with one more b than a.

Let's start with a grammar that produces strings with a s followed by $b \mathrm{~s}$ where there are the same number of $a s$ and $b s$.

$$
\begin{aligned}
& S \longrightarrow a S b \\
& S \longrightarrow \epsilon
\end{aligned}
$$

Since we only want one extra b, it should be added at the end.

$$
\begin{aligned}
& S \longrightarrow a S b \\
& S \longrightarrow b
\end{aligned}
$$

This no longer allows ϵ, but that's OK - there can be 0 as, but one more b than a means there has to be at least $1 b$.

Find a context-free grammar that generates the language $\left\{a^{n} b^{m} c^{n} \mid n, m \in \mathbb{N}\right\}$.
Answer:

$$
\begin{aligned}
& S \longrightarrow a S c \\
& S \longrightarrow B \\
& B \longrightarrow b B \\
& B \longrightarrow \epsilon
\end{aligned}
$$

Discussion: This language consists of strings of a s followed by b s followed by cs, with the same number of as and cs.

Let's start with a grammar that produces strings with as followed by cs where there are the same number of a s and cs.

$$
\begin{aligned}
& S \longrightarrow a S c \\
& S \longrightarrow \epsilon
\end{aligned}
$$

To generate a string of $b s$

$$
\begin{aligned}
& B \longrightarrow b B \\
& B \longrightarrow \epsilon
\end{aligned}
$$

To switch from replacing $S \mathrm{~s}$ (and generating a and $c \mathrm{~s}$) to replace B (and generating $b \mathrm{~s}$), add a rule $S \longrightarrow B$.

Putting these all together:

$$
\begin{aligned}
& S \longrightarrow a S c \\
& S \longrightarrow \epsilon \\
& S \longrightarrow B \\
& B \longrightarrow b B \\
& B \longrightarrow \epsilon
\end{aligned}
$$

Check that this works as desired. $S \longrightarrow \epsilon$ allows ϵ, which is in the language. (Also $S \Longrightarrow B \Longrightarrow \epsilon$, so $S \longrightarrow \epsilon$ isn't actually needed.) $a c$ can be generated, as can $a b c$.

