The following derivation examples illustrate some of the ways in which general grammars can work.

Find a derivation for the string caabcb according to the grammar shown.

$$
\begin{aligned}
& S \longrightarrow S A B C \\
& S \longrightarrow \varepsilon \\
& A B \longrightarrow B A \\
& B A \longrightarrow A B \\
& A C \longrightarrow C A \\
& C A \longrightarrow A C \\
& B C \longrightarrow B \\
& C B \longrightarrow B C \\
& A \longrightarrow a \\
& B \longrightarrow b \\
& C \longrightarrow c
\end{aligned}
$$

Answer:

$$
\begin{aligned}
S & \Longrightarrow S A B C \\
& \Longrightarrow S A B C A B C \\
& \Longrightarrow A B C A B C \\
& \Longrightarrow A C B A B C \\
& \Longrightarrow C A B A B C \\
& \Longrightarrow C A A B B C \\
& \Longrightarrow C A A B C B \\
& \Longrightarrow c A A B C B \\
& \Longrightarrow c a A B C B \\
& \Longrightarrow c a a B C B \\
& \Longrightarrow c a a b C B \\
& \Longrightarrow c a a b c B \\
& \Longrightarrow c a a b c b
\end{aligned}
$$

Discussion: Observe first that the only way to get terminals is from the rules $A \longrightarrow a$, $B \longrightarrow b, C \longrightarrow c$ and that the only way to generate more copies of the non-terminals is $S \longrightarrow S A B C$. So the first step is to generate enough $A \mathrm{~s}, B \mathrm{~s}, C \mathrm{~s}$, and then get rid of the S.

$$
\begin{array}{rlrl}
S & \Longrightarrow S A B C & & S \longrightarrow S A B C \\
& \Longrightarrow S A B C A B C & S \longrightarrow S A B C \\
& \Longrightarrow A B C A B C & S \longrightarrow \epsilon
\end{array}
$$

Now observe that the rest of the productions rearrange the order of the $A \mathrm{~s}, B \mathrm{~s}, C \mathrm{~s}$. We need $C A A B C B$.

$$
\begin{array}{ll}
\Longrightarrow A C B A B C & B C \longrightarrow C B \\
\Longrightarrow C A B A B C & A C \longrightarrow C A \\
\Longrightarrow C A A B B C & A B \longrightarrow B A \\
\Longrightarrow C A A B C B & B C \longrightarrow C B
\end{array}
$$

Finally, generate the terminals.

$$
\begin{array}{ll}
\Longrightarrow c A A B C B & C \longrightarrow c \\
\Longrightarrow c a A B C B & A \longrightarrow a \\
\Longrightarrow c a a B C B & B \longrightarrow b \\
\Longrightarrow c a a b C B & A \longrightarrow a \\
\Longrightarrow c a a b c B & C \longrightarrow c \\
\Longrightarrow c a a b c b & B \longrightarrow b
\end{array}
$$

Find a derivation for the string $a a b b c c$ according to the grammar shown.

$$
\begin{aligned}
S & \longrightarrow S A B C \\
S & \longrightarrow X \\
B A & \longrightarrow A B \\
C A & \longrightarrow A C \\
C B & \longrightarrow B C \\
X A & \longrightarrow a X \\
X & \longrightarrow Y \\
Y B & \longrightarrow b Y \\
Y & \longrightarrow Z \\
Z C & \longrightarrow c Z \\
Z & \longrightarrow \varepsilon
\end{aligned}
$$

Answer:

$$
\begin{aligned}
S & \Longrightarrow S A B C \\
& \Longrightarrow S A B C A B C \\
& \Longrightarrow X A B C A B C \\
& \Longrightarrow X A B A C B C \\
& \Longrightarrow X A A B C B C \\
& \Longrightarrow X A A B B C C \\
& \Longrightarrow a X A B B C C \\
& \Longrightarrow a a X B B C C \\
& \Longrightarrow a a Y B B C C \\
& \Longrightarrow a a b Y B C C \\
& \Longrightarrow a a b b Y C C \\
& \Longrightarrow a a b b Z C C \\
& \Longrightarrow a a b b c Z C \\
& \Longrightarrow a a b b c c Z \\
& \Longrightarrow a a b b c c
\end{aligned}
$$

Discussion: This derivation starts in a similar way - get enough $A \mathrm{~s}, B \mathrm{~s}$, and $C \mathrm{~s}$ to produce the necessary terminals.

$$
\begin{array}{rlrl}
S & \Longrightarrow S A B C & S \longrightarrow S A B C \\
& \Longrightarrow S A B C A B C & S \longrightarrow S A B C \\
& \Longrightarrow X A B C A B C & S \longrightarrow X
\end{array}
$$

Next, get the non-terminals in the right order:

$$
\begin{array}{ll}
\Longrightarrow X A B A C B C & C A \longrightarrow A C \\
\Longrightarrow X A A B C B C & B A \longrightarrow A B \\
\Longrightarrow X A A B B C C & C B \longrightarrow B C
\end{array}
$$

Finally, generate the terminals:

$$
\begin{array}{ll}
\Longrightarrow a X A B B C C & X A \longrightarrow a X \\
\Longrightarrow a a X B B C C & X A \longrightarrow a X \\
\Longrightarrow a a Y B B C C & X \longrightarrow Y \\
\Longrightarrow a a b Y B C C & Y B \longrightarrow b Y \\
\Longrightarrow a a b b Y C C & Y B \longrightarrow b Y \\
\Longrightarrow a a b b Z C C & Y \longrightarrow Z \\
\Longrightarrow a a b b c Z C & Z C \longrightarrow c Z \\
\Longrightarrow a a b b c c Z & Z C \longrightarrow c Z \\
\Longrightarrow a a b b c c & Z \longrightarrow \epsilon
\end{array}
$$

In this last phase, X (and then Y and Z) sweeps across, transforming the nonterminals into terminals. This is necessary in order to delay the transformation of non-terminals into terminals until after the non-terminals have been arranged in the right order - if there were simply rules $A \longrightarrow a$ (etc), then strings like abcabc could be generated.

Find a derivation for the string $a a a a$ according to the grammar shown.

$$
\begin{array}{rl}
S & \longrightarrow D T E \\
T & \longrightarrow B T A \\
T & \longrightarrow \varepsilon \\
B A & \longrightarrow A a B \\
B a & \longrightarrow a B \\
B E & \longrightarrow E \\
D A & D \\
D a & \longrightarrow a D \\
D E & \longrightarrow \varepsilon
\end{array}
$$

Answer:

$$
\begin{aligned}
& S \Longrightarrow D T E \\
& \Longrightarrow D B T A E \\
& \Longrightarrow D B B T A A E \\
& \Longrightarrow D B B A A E \\
& \Longrightarrow D B A a B A E \\
& \Longrightarrow D A a B a B A E \\
& \Longrightarrow D A a a B A a B E \\
& \Longrightarrow D A a a A a B a B E \\
& \Longrightarrow D a a A a a B B E \\
& \Longrightarrow D a a A a a B E \\
& \Longrightarrow A a a A a a E \\
& \Longrightarrow a a a A a a E \\
& \Longrightarrow D a A a a E \\
& \Longrightarrow a a D A a a E \\
& \Longrightarrow a a D a a E \\
& \Longrightarrow a a a D a E \\
& \Longrightarrow a a a a D E \\
& \Longrightarrow a a a a
\end{aligned}
$$

Discussion: There is only one first step, but then the question is how many times to use the $T \longrightarrow B T A$ rule. With rules $B A \longrightarrow A a B, B a \longrightarrow a B$, and $D a \longrightarrow a D$, both B and D sweep left-to-right like X did in the previous grammar, and only B (or, actually, $B A$) leads to more a s, but it's still not entirely clear how many A s and B s to start with. Let's try a single application of $T \longrightarrow B T A$ to see what happens.

$$
\begin{array}{rlrl}
S & \Longrightarrow D T E & & S \longrightarrow D T E \\
& \Longrightarrow D B T A E & T \longrightarrow B T A \\
& \Longrightarrow D B A E & & T \longrightarrow \epsilon
\end{array}
$$

Now there is only one choice:

$$
\Longrightarrow D A a B E \quad B A \longrightarrow A a B
$$

With A on the left and B on the right, they can be eliminated:

$$
\begin{array}{ll}
\Longrightarrow D a B E & D A \longrightarrow D \\
\Longrightarrow D a E & B E \longrightarrow E
\end{array}
$$

And finally, D is moved to the end and all of the non-terminals eliminated:

$$
\begin{array}{ll}
\Longrightarrow a D E & D a \longrightarrow a D \\
\Longrightarrow a & D E \longrightarrow \epsilon
\end{array}
$$

$1=1^{2}$, so a is a legal string and it seems like n applications of $T \longrightarrow B T A$ yield $a^{n^{2}}$. Since we want aaaa $\left(a^{2^{2}}\right)$, let's try two:

$$
\begin{aligned}
S & \Longrightarrow D T E & & S \longrightarrow D T E \\
& \Longrightarrow D B T A E & & T \longrightarrow B T A \\
& \Longrightarrow D B B T A A E & & T \longrightarrow B T A \\
& \Longrightarrow D B B A A E & & T \longrightarrow \epsilon
\end{aligned}
$$

Now there is only one choice:

$$
\Longrightarrow D B A a B A E \quad B A \longrightarrow A a B
$$

Continue with the same rule, then shift the a forward:

$$
\begin{aligned}
& \Longrightarrow D A a B a B A E \quad B A \longrightarrow A a B \\
& \Longrightarrow D A a a B B A E \\
& \Longrightarrow D a \longrightarrow a B
\end{aligned}
$$

$B a \longrightarrow a B$ wasn't the only option for the previous step, but observe what the last three steps have accomplished: the $B B$ has been moved one A to the right and two as have been produced.

Let's try a similar sequence again:

$$
\begin{array}{ll}
\Longrightarrow D A a a B A a B E & B A \longrightarrow A a B \\
\Longrightarrow D A a a A a B a B E & B A \longrightarrow A a B \\
\Longrightarrow D A a a A a a B B E & B a \longrightarrow a B
\end{array}
$$

And there's a similar outcome - $B B$ has been moved another A to the right and two a s have been produced.

Now there are no more $B A$ s, but the B s can be cancelled:

$$
\begin{array}{ll}
\Longrightarrow D A a a A a a B E & B E \longrightarrow E \\
\Longrightarrow D A a a A a a E & B E \longrightarrow E
\end{array}
$$

Sweep the D forward to clean up the $A \mathrm{~s}$:

$$
\begin{array}{ll}
\Longrightarrow D a a A a a E & D A \longrightarrow D \\
\Longrightarrow a D a A a a E & D a \longrightarrow a D \\
\Longrightarrow a a D A a a E & D a \longrightarrow a D \\
\Longrightarrow a a D a a E & D A \longrightarrow D \\
\Longrightarrow a a a D a E & D a \longrightarrow a D \\
\Longrightarrow a a a a D E & D a \longrightarrow a D
\end{array}
$$

And finally, clean up the remaining non-terminals:

$$
\Longrightarrow a a a a \quad D E \longrightarrow \epsilon
$$

So, how does this grammar work? D and E denote the end of the string and, effectively, the workspace. The group of B s moves forward one A at a time, producing an a for each B in the group - this is where the multiplication computation is happening. The rest is bookkeeping, to clean up the A s when they are no longer needed. The sweep approach with D is similar to the X in the previous grammar - it ensures that A s aren't eliminated until after the B s have passed by.

