The following derivation examples illustrate some of the ways in which general grammars can work.

Find a derivation for the string *caabcb* according to the grammar shown.

 $\begin{array}{c} S \longrightarrow SABC \\ S \longrightarrow \varepsilon \\ AB \longrightarrow BA \\ BA \longrightarrow AB \\ AC \longrightarrow CA \\ CA \longrightarrow AC \\ BC \longrightarrow CB \\ CB \longrightarrow BC \\ A \longrightarrow a \\ B \longrightarrow b \\ C \longrightarrow c \end{array}$

Answer:

$$S \Longrightarrow SABC$$
$$\Longrightarrow SABCABC$$
$$\Longrightarrow ABCABC$$
$$\Longrightarrow ABCABC$$
$$\Longrightarrow CABABC$$
$$\Longrightarrow CABABC$$
$$\Longrightarrow CAABBC$$
$$\Longrightarrow CAABCB$$

Discussion: Observe first that the only way to get terminals is from the rules $A \longrightarrow a$, $B \longrightarrow b$, $C \longrightarrow c$ and that the only way to generate more copies of the non-terminals is $S \longrightarrow SABC$. So the first step is to generate enough As, Bs, Cs, and then get rid of the S.

$$S \Longrightarrow SABC \qquad S \longrightarrow SABC$$
$$\Longrightarrow SABCABC \qquad S \longrightarrow SABC$$
$$\Longrightarrow ABCABC \qquad S \longrightarrow \epsilon$$

Now observe that the rest of the productions rearrange the order of the As, Bs, Cs. We need CAABCB.

$\implies ACBABC$	$BC \longrightarrow CB$
$\implies CABABC$	$AC \longrightarrow CA$
$\implies CAABBC$	$AB \longrightarrow BA$
$\implies CAABCB$	$BC \longrightarrow CB$

Finally, generate the terminals.

$C \longrightarrow c$
$A \longrightarrow a$
$B \longrightarrow b$
$A \longrightarrow a$
$C \longrightarrow c$
$B \longrightarrow b$

Find a derivation for the string *aabbcc* according to the grammar shown.

 $\begin{array}{c} S \longrightarrow SABC \\ S \longrightarrow X \\ BA \longrightarrow AB \\ CA \longrightarrow AC \\ CB \longrightarrow BC \\ XA \longrightarrow aX \\ X \longrightarrow Y \\ YB \longrightarrow bY \\ Y \longrightarrow Z \\ ZC \longrightarrow cZ \\ Z \longrightarrow \varepsilon \end{array}$

Answer:

 $S \Longrightarrow SABC$ $\Longrightarrow SABCABC$ $\Longrightarrow XABCABC$ $\Longrightarrow XABACBC$ $\Longrightarrow XABACBC$ $\Longrightarrow XAABCBC$ $\Longrightarrow XAABBCC$ $\Longrightarrow aXABBCC$ $\Rightarrow aaXBBCC$ $\Rightarrow aaYBBCC$ $\Rightarrow aabYBCC$ $\Rightarrow aabbYCC$ $\Rightarrow aabbZCC$ $\Rightarrow aabbcZC$ $\Rightarrow aabbczZ$ $\Rightarrow aabbccZ$ $\Rightarrow aabbccZ$

Discussion: This derivation starts in a similar way — get enough As, Bs, and Cs to produce the necessary terminals.

$$S \Longrightarrow SABC \qquad S \longrightarrow SABC \Longrightarrow SABCABC \qquad S \longrightarrow SABC \Longrightarrow XABCABC \qquad S \longrightarrow X$$

Next, get the non-terminals in the right order:

 $\implies XABACBC \quad CA \longrightarrow AC$ $\implies XAABCBC \quad BA \longrightarrow AB$ $\implies XAABBCC \quad CB \longrightarrow BC$

Finally, generate the terminals:

$$\Rightarrow aXABBCC \quad XA \longrightarrow aX$$

$$\Rightarrow aaXBBCC \quad XA \longrightarrow aX$$

$$\Rightarrow aaYBBCC \quad XA \longrightarrow aX$$

$$\Rightarrow aaYBBCC \quad YB \longrightarrow bY$$

$$\Rightarrow aabbYCC \quad YB \longrightarrow bY$$

$$\Rightarrow aabbZCC \quad Y \longrightarrow Z$$

$$\Rightarrow aabbcZC \quad ZC \longrightarrow cZ$$

$$\Rightarrow aabbccZ \quad ZC \longrightarrow cZ$$

$$\Rightarrow aabbccZ \quad Z \longrightarrow \epsilon$$

In this last phase, X (and then Y and Z) sweeps across, transforming the nonterminals into terminals. This is necessary in order to delay the transformation of non-terminals into terminals until after the non-terminals have been arranged in the right order — if there were simply rules $A \longrightarrow a$ (etc), then strings like *abcabc* could be generated. Find a derivation for the string *aaaa* according to the grammar shown.

 $\begin{array}{c} S \longrightarrow DTE \\ T \longrightarrow BTA \\ T \longrightarrow \varepsilon \\ BA \longrightarrow AaB \\ Ba \longrightarrow aB \\ BE \longrightarrow E \\ DA \longrightarrow D \\ Da \longrightarrow aD \\ DE \longrightarrow \varepsilon \end{array}$

Answer:

 $S \Longrightarrow DTE$ $\implies DBTAE$ $\implies DBBTAAE$ $\implies DBBAAE$ $\implies DBAaBAE$ $\implies DAaBaBAE$ $\implies DAaaBBAE$ $\implies DAaaBAaBE$ $\implies DAaaAaBaBE$ $\implies DAaaAaaBBE$ $\implies DAaaAaaBE$ $\implies DAaaAaaE$ $\implies DaaAaaE$ $\implies aDaAaaE$ $\implies aaDAaaE$ $\implies aaDaaE$ $\implies aaaDaE$ $\implies aaaaDE$ $\implies aaaa$

Discussion: There is only one first step, but then the question is how many times to use the $T \longrightarrow BTA$ rule. With rules $BA \longrightarrow AaB$, $Ba \longrightarrow aB$, and $Da \longrightarrow aD$, both B and D sweep left-to-right like X did in the previous grammar, and only B (or, actually, BA) leads to more as, but it's still not entirely clear how many As and Bs to start with. Let's try a single application of $T \longrightarrow BTA$ to see what happens.

$$S \Longrightarrow DTE \qquad S \longrightarrow DTE \Longrightarrow DBTAE \quad T \longrightarrow BTA \Longrightarrow DBAE \qquad T \longrightarrow \epsilon$$

Now there is only one choice:

$$\implies DAaBE \quad BA \longrightarrow AaB$$

With A on the left and B on the right, they can be eliminated:

$$\implies DaBE \quad DA \longrightarrow D$$
$$\implies DaE \quad BE \longrightarrow E$$

And finally, D is moved to the end and all of the non-terminals eliminated:

$$\implies aDE \quad Da \longrightarrow aD$$
$$\implies a \qquad DE \longrightarrow \epsilon$$

 $1 = 1^2$, so a is a legal string and it seems like n applications of $T \longrightarrow BTA$ yield a^{n^2} . Since we want *aaaa* (a^{2^2}) , let's try two:

$$S \Longrightarrow DTE \qquad S \longrightarrow DTE \Longrightarrow DBTAE \qquad T \longrightarrow BTA \Longrightarrow DBBTAAE \qquad T \longrightarrow BTA \Longrightarrow DBBAAE \qquad T \longrightarrow \epsilon$$

Now there is only one choice:

 $\implies DBAaBAE \quad BA \longrightarrow AaB$

Continue with the same rule, then shift the a forward:

$$\implies DAaBaBAE \quad BA \longrightarrow AaB$$
$$\implies DAaaBBAE \quad Ba \longrightarrow aB$$

 $Ba \longrightarrow aB$ wasn't the only option for the previous step, but observe what the last three steps have accomplished: the BB has been moved one A to the right and two as have been produced.

Let's try a similar sequence again:

$$\implies DAaaBAaBE \quad BA \longrightarrow AaB$$
$$\implies DAaaAaBaBE \quad BA \longrightarrow AaB$$
$$\implies DAaaAaaBBE \quad Ba \longrightarrow aB$$

And there's a similar outcome — BB has been moved another A to the right and two as have been produced.

Now there are no more BAs, but the Bs can be cancelled:

 $\implies DAaaAaaBE \quad BE \longrightarrow E$ $\implies DAaaAaaE \quad BE \longrightarrow E$

Sweep the D forward to clean up the As:

And finally, clean up the remaining non-terminals:

$$\implies aaaa \quad DE \longrightarrow \epsilon$$

So, how does this grammar work? D and E denote the end of the string and, effectively, the workspace. The group of Bs moves forward one A at a time, producing an a for each B in the group — this is where the multiplication computation is happening. The rest is bookkeeping, to clean up the As when they are no longer needed. The sweep approach with D is similar to the X in the previous grammar — it ensures that As aren't eliminated until after the Bs have passed by.