
CPSC 229, Spring 2024

The following derivation examples illustrate some of the ways in which general
grammars can work.

Find a derivation for the string caabcb according to the grammar shown.

Answer:

S =⇒ SABC

=⇒ SABCABC

=⇒ ABCABC

=⇒ ACBABC

=⇒ CABABC

=⇒ CAABBC

=⇒ CAABCB

=⇒ cAABCB

=⇒ caABCB

=⇒ caaBCB

=⇒ caabCB

=⇒ caabcB

=⇒ caabcb

Discussion: Observe first that the only way to get terminals is from the rules A −→ a,
B −→ b, C −→ c and that the only way to generate more copies of the non-terminals
is S −→ SABC. So the first step is to generate enough As, Bs, Cs, and then get rid
of the S.



CPSC 229, Spring 2024

S =⇒ SABC S −→ SABC

=⇒ SABCABC S −→ SABC

=⇒ ABCABC S −→ ε

Now observe that the rest of the productions rearrange the order of the As, Bs, Cs.
We need CAABCB.

=⇒ ACBABC BC −→ CB

=⇒ CABABC AC −→ CA

=⇒ CAABBC AB −→ BA

=⇒ CAABCB BC −→ CB

Finally, generate the terminals.

=⇒ cAABCB C −→ c

=⇒ caABCB A −→ a

=⇒ caaBCB B −→ b

=⇒ caabCB A −→ a

=⇒ caabcB C −→ c

=⇒ caabcb B −→ b



CPSC 229, Spring 2024

Find a derivation for the string aabbcc according to the grammar shown.

Answer:

S =⇒ SABC

=⇒ SABCABC

=⇒ XABCABC

=⇒ XABACBC

=⇒ XAABCBC

=⇒ XAABBCC

=⇒ aXABBCC

=⇒ aaXBBCC

=⇒ aaY BBCC

=⇒ aabY BCC

=⇒ aabbY CC

=⇒ aabbZCC

=⇒ aabbcZC

=⇒ aabbccZ

=⇒ aabbcc

Discussion: This derivation starts in a similar way — get enough As, Bs, and Cs to
produce the necessary terminals.

S =⇒ SABC S −→ SABC

=⇒ SABCABC S −→ SABC

=⇒ XABCABC S −→ X

Next, get the non-terminals in the right order:



CPSC 229, Spring 2024

=⇒ XABACBC CA −→ AC

=⇒ XAABCBC BA −→ AB

=⇒ XAABBCC CB −→ BC

Finally, generate the terminals:

=⇒ aXABBCC XA −→ aX

=⇒ aaXBBCC XA −→ aX

=⇒ aaY BBCC X −→ Y

=⇒ aabY BCC Y B −→ bY

=⇒ aabbY CC Y B −→ bY

=⇒ aabbZCC Y −→ Z

=⇒ aabbcZC ZC −→ cZ

=⇒ aabbccZ ZC −→ cZ

=⇒ aabbcc Z −→ ε

In this last phase, X (and then Y and Z) sweeps across, transforming the non-
terminals into terminals. This is necessary in order to delay the transformation of
non-terminals into terminals until after the non-terminals have been arranged in the
right order — if there were simply rules A −→ a (etc), then strings like abcabc could
be generated.



CPSC 229, Spring 2024

Find a derivation for the string aaaa according to the grammar shown.

Answer:

S =⇒ DTE

=⇒ DBTAE

=⇒ DBBTAAE

=⇒ DBBAAE

=⇒ DBAaBAE

=⇒ DAaBaBAE

=⇒ DAaaBBAE

=⇒ DAaaBAaBE

=⇒ DAaaAaBaBE

=⇒ DAaaAaaBBE

=⇒ DAaaAaaBE

=⇒ DAaaAaaE

=⇒ DaaAaaE

=⇒ aDaAaaE

=⇒ aaDAaaE

=⇒ aaDaaE

=⇒ aaaDaE

=⇒ aaaaDE

=⇒ aaaa

Discussion: There is only one first step, but then the question is how many times to
use the T −→ BTA rule. With rules BA −→ AaB, Ba −→ aB, and Da −→ aD,
both B and D sweep left-to-right like X did in the previous grammar, and only B (or,
actually, BA) leads to more as, but it’s still not entirely clear how many As and Bs to
start with. Let’s try a single application of T −→ BTA to see what happens.



CPSC 229, Spring 2024

S =⇒ DTE S −→ DTE

=⇒ DBTAE T −→ BTA

=⇒ DBAE T −→ ε

Now there is only one choice:

=⇒ DAaBE BA −→ AaB

With A on the left and B on the right, they can be eliminated:

=⇒ DaBE DA −→ D

=⇒ DaE BE −→ E

And finally, D is moved to the end and all of the non-terminals eliminated:

=⇒ aDE Da −→ aD

=⇒ a DE −→ ε

1 = 12, so a is a legal string and it seems like n applications of T −→ BTA yield
an

2
. Since we want aaaa (a2

2
), let’s try two:

S =⇒ DTE S −→ DTE

=⇒ DBTAE T −→ BTA

=⇒ DBBTAAE T −→ BTA

=⇒ DBBAAE T −→ ε

Now there is only one choice:

=⇒ DBAaBAE BA −→ AaB

Continue with the same rule, then shift the a forward:

=⇒ DAaBaBAE BA −→ AaB

=⇒ DAaaBBAE Ba −→ aB

Ba −→ aB wasn’t the only option for the previous step, but observe what the last
three steps have accomplished: the BB has been moved one A to the right and two as
have been produced.

Let’s try a similar sequence again:

=⇒ DAaaBAaBE BA −→ AaB

=⇒ DAaaAaBaBE BA −→ AaB

=⇒ DAaaAaaBBE Ba −→ aB

And there’s a similar outcome — BB has been moved another A to the right and
two as have been produced.

Now there are no more BAs, but the Bs can be cancelled:



CPSC 229, Spring 2024

=⇒ DAaaAaaBE BE −→ E

=⇒ DAaaAaaE BE −→ E

Sweep the D forward to clean up the As:

=⇒ DaaAaaE DA −→ D

=⇒ aDaAaaE Da −→ aD

=⇒ aaDAaaE Da −→ aD

=⇒ aaDaaE DA −→ D

=⇒ aaaDaE Da −→ aD

=⇒ aaaaDE Da −→ aD

And finally, clean up the remaining non-terminals:

=⇒ aaaa DE −→ ε

So, how does this grammar work? D and E denote the end of the string and, effec-
tively, the workspace. The group of Bs moves forward one A at a time, producing an a
for each B in the group — this is where the multiplication computation is happening.
The rest is bookkeeping, to clean up the As when they are no longer needed. The
sweep approach with D is similar to the X in the previous grammar — it ensures that
As aren’t eliminated until after the Bs have passed by.


