Find a grammar that generates the language

$$
L=\left\{a^{n} b^{n} c^{n} d^{n} \mid n \in \mathbb{N}\right\}
$$

Also explain how your grammar works.
Answer: This grammar works by first generating the correct number of non-terminals corresponding to the desired symbols, then putting the non-terminals in the correct order, and finally sweeping through the string, replacing non-terminals with the corresponding terminal.

$$
\begin{array}{rlrl}
S & \longrightarrow S A B C D & & \text { generate enough of each symbol, keeping the numbers equal } \\
S & \longrightarrow W & & \\
& & \\
& & \\
B A & \longrightarrow A B & & \text { put the non-terminals in order } \\
C A & \longrightarrow A C & & \\
C B & \longrightarrow B C & & \\
D A & \longrightarrow A D & & \\
D B & \longrightarrow B D & & \\
D C & \longrightarrow C D & & \\
& & \\
W A & \longrightarrow a W & & \\
W & \longrightarrow X & & \\
X B & \longrightarrow & & \\
X & \longrightarrow Y & & \\
Y C & \longrightarrow C Y & & \\
Y & \longrightarrow Z & & \\
Z D & \longrightarrow d Z & & \\
Z & \longrightarrow \epsilon & & \text { eliminatch to the next stage of the swe sweeper }
\end{array}
$$

Discussion: A good starting point can be a grammar for a similar language - understand how it works, then adapt it for the particular desired language. Recall the grammar for $a^{n} b^{n} c^{n}$ that was discussed in class:

$$
\begin{aligned}
S & \longrightarrow S A B C \\
S & \longrightarrow X \\
B A & \longrightarrow A B \\
C A & \longrightarrow A C \\
C B & \longrightarrow B C \\
X A & \longrightarrow a X \\
X & \longrightarrow Y \\
Y B & \longrightarrow b Y \\
Y & \longrightarrow Z \\
Z C & \longrightarrow c Z \\
Z & \longrightarrow \varepsilon
\end{aligned}
$$

See the posted derivations examples for a more complete discussion of how this grammar works, but the idea was that there were three stages - first the $S \longrightarrow S A B C$ rule is used to generate enough $A \mathrm{~s}, B \mathrm{~s}$, and $C \mathrm{~s}$ (and because each application of the rule generates one of each, there will be the same number of each in the end). Then, the rules of the form $B A \longrightarrow A B$ are used to get the non-terminals in the right order. Finally, the rules of the form $X A \longrightarrow a X$ in conjunction with rules of the form $S \longrightarrow X$ sweep through the string, replacing non-terminals with terminals.

So, for $a^{n} b^{n} c^{n} d^{n}$:

$$
\begin{array}{ll}
S \longrightarrow S A B C D & \text { generate enough of each symbol, keeping the numbers equal } \\
S \longrightarrow W & \text { set up the sweeper }
\end{array}
$$

$B A \longrightarrow A B \quad$ put the non-terminals in order
$C A \longrightarrow A C$
$C B \longrightarrow B C$
$D A \longrightarrow A D$
$D B \longrightarrow B D$
$D C \longrightarrow C D$

$$
\begin{array}{rlrl}
W A & \longrightarrow a W & & \text { sweep across, replacing non-terminals with terminals } \\
W & \longrightarrow X & & \\
X B & \longrightarrow b X & \\
X & \longrightarrow Y & \\
Y C & \longrightarrow c Y & \\
Y & \longrightarrow Z & \\
Z D & \longrightarrow d Z & \\
Z & \longrightarrow \epsilon & & \\
& & \\
& & \\
\end{array}
$$

Find a grammar that generates the language

$$
L=\left\{a^{2^{n}} \mid n \in \mathbb{N}\right\}
$$

Also explain how your grammar works.
Answer: The idea is to repeatedly double the number of symbols. We'll use B to keep track of how many times to do the doubling, and A to keep track of the number of as to generate.

Discussion: This is similar to $a^{n^{2}}$, which was discussed in class. Recall that grammar:

$$
\begin{array}{r}
S \longrightarrow D T E \\
T \longrightarrow B T A \\
T \longrightarrow \varepsilon \\
B A \longrightarrow A a B \\
B a \longrightarrow a B \\
B E \longrightarrow E \\
D A \longrightarrow D \\
D a \longrightarrow a D \\
D E \longrightarrow \varepsilon
\end{array}
$$

See the posted derivations examples for a more complete discussion of how this grammar works, but first recognize that $a^{n^{2}}=a^{n n}$ - i.e. the grammar is computing the product of $n \times n$. The idea of the grammar is to use the $T \longrightarrow B T A$ rule to produce $n B \mathrm{~s}$ and $n A \mathrm{~s}$, then sweep the group of $n B \mathrm{~s}$ to the right, generating an a each time $B A$ arises - the rule $B A \longrightarrow A a B$ moves the B past the A and generates the a. Each time the group of $n B$ s goes past one A, n as are generated, so when the $n B \mathrm{~s}$ have passed all $n A \mathrm{~s}, n^{2}$ as have been generated. E absorbs B s that have made it to the end $(B E \longrightarrow E)$, and D eliminates A s once all of the B s have passed $(D A \longrightarrow D)$.

So what about $a^{2^{n}} ? 2^{n}$ isn't the product of two numbers, it's $\overbrace{2 \times 2 \times \ldots \times 2 \times 2}^{n \text { times }}$. But this can be written $(((1 \times 2) \times 2) \times 2) \times \ldots$ - the idea is to repeatedly double the previous value. So, if we start with one A and double it each time a B passes...

Start the grammar with rules to create one A and $n B \mathrm{~s}$:

$$
\begin{aligned}
& S \longrightarrow D T A E \\
& T \longrightarrow T B \\
& T \longrightarrow \epsilon
\end{aligned}
$$

Let's try generating $a^{8}=a^{2^{3}}$ as an example and a test of the grammar. Use the $T \longrightarrow T B$ rule to generate $n B \mathrm{~s}$:

$$
\begin{aligned}
S & \Longrightarrow D T A E & & S \longrightarrow D T A E \\
& \Longrightarrow D T B A E & & T \longrightarrow T B \\
& \Longrightarrow D T B B A E & & T \longrightarrow T B \\
& \Longrightarrow D T B B B A E & & T \longrightarrow T B \\
& \Longrightarrow D B B B A E & & T \longrightarrow \epsilon
\end{aligned}
$$

Now we want to move the B s to the right, doubling the A s each time. Add a rule:

$$
B A \longrightarrow A A B
$$

Then continue the derivation:

$$
\begin{array}{ll}
\Longrightarrow D B B A A B E & B A \longrightarrow A A B \\
\Longrightarrow D B A A B A B E & B A \longrightarrow A A B \\
\Longrightarrow D B A A A A B B E & B A \longrightarrow A A B \\
\Longrightarrow D A A B A A A B B E & B A \longrightarrow A A B \\
\Longrightarrow D A A A A B A A B B E & B A \longrightarrow A A B \\
\Longrightarrow D A A A A A A B A B B E & B A \longrightarrow A A B \\
\Longrightarrow D A A A A A A A A B B B E & B A \longrightarrow A A B
\end{array}
$$

Observe that we now have the right number of $A \mathrm{~s}$. We're done with the $B \mathrm{~s}$, so clean them up. Add a rule:

$$
B E \longrightarrow E
$$

Then continue the derivation:

$$
\begin{array}{ll}
\Longrightarrow D A A A A A A A A B B E & B E \longrightarrow E \\
\Longrightarrow D A A A A A A A A B E & B E \longrightarrow E \\
\Longrightarrow D A A A A A A A A E & B E \longrightarrow E
\end{array}
$$

Next, sweep the D through to convert the A s to a s. (Why sweep instead of just a rule $A \longrightarrow a$? Sweeping ensures that A can't be converted to a until all of the B s have passed (and duplicated) that A.) Add a rule:

$$
D A \longrightarrow a D
$$

Then continue the derivation:

$$
\begin{array}{ll}
\Longrightarrow a D A A A A A A A E & D A \longrightarrow a D \\
\Longrightarrow a a D A A A A A A E & D A \longrightarrow a D \\
\Longrightarrow a a a D A A A A A E & D A \longrightarrow a D \\
\Longrightarrow \text { aaaaDAAAAE } & D A \longrightarrow a D \\
\Longrightarrow \text { aaaaaDAAAE } & D A \longrightarrow a D \\
\Longrightarrow \text { aaaaaa } D A A E & D A \longrightarrow a D \\
\Longrightarrow \text { aaaaaaa } D A E & D A \longrightarrow a D \\
\Longrightarrow \text { aaaaaaaa } D E & D A \longrightarrow a D
\end{array}
$$

Finally, clean up the $D E$. Add a rule:

$$
D E \longrightarrow \epsilon
$$

Then continue the derivation:

$$
\Longrightarrow \text { aaaaaaaaa } \quad D E \longrightarrow \epsilon
$$

Find a grammar that generates the language

$$
L=\left\{w w \mid w \in\{a, b\}^{*}\right\}
$$

Also explain how your grammar works.
Answer: The strategy is to generate $w w^{R}$, then reverse w^{R} using the idea of a stack, and finally clean up the remaining non-terminals.

$$
\begin{aligned}
& S \longrightarrow R T \quad T \text { is a marker for the top of the stack used to reverse } w^{R} \\
& R \longrightarrow a R a \\
& R \longrightarrow b R b \\
& R \text { generate } w w^{R} \\
& \\
& D \longrightarrow D P \\
& \text { add a divider between } w \text { and } w^{R} \\
& P a a \longrightarrow a P a \\
& P a b \longrightarrow b P a \\
& P b a \longrightarrow a P b \\
& P b b \longrightarrow b P b \\
& P a T \longrightarrow T a \\
& P b T \longrightarrow T b \\
& D T \longrightarrow \epsilon \\
& \text { cleash the pymbol following the } P \text { to the top of the stack (the other side of the } T \text {) } \\
& \\
&
\end{aligned}
$$

Discussion: There wasn't a direct example of this type of grammar discussed in class, but we can still draw inspiration from the general idea of the $a^{n} b^{n} c^{n}$ grammar - first generate the right symbols, then get them in the right order. We know how to generate matched sets from context-free grammars - the following generates $w w^{R}$:

$$
\begin{aligned}
& S \longrightarrow a S a \\
& S \longrightarrow b S b \\
& S \longrightarrow \epsilon
\end{aligned}
$$

So then the idea is to reverse the second half of the generated string. Recall from pushdown automata that a stack reverses things - constructing a pushdown automaton to accept $w c w^{R}$ was discussed in class, and the idea was to push w onto the stack one symbol at a time, then pop a matching symbol for each symbol of w^{R}. How is this relevant to our grammar? Let's set up an intermediate step of the derivation as follows:

$$
w D P w^{R} T
$$

where D acts as a divider between w and w^{R}, T sits just to the left of the top of the stack, and P is a pusher that will push one symbol of w^{R} to the top of the stack. To do this, start with the following rules:

$$
\begin{aligned}
& S \longrightarrow R T \\
& R \longrightarrow a R a \\
& R \longrightarrow b R b \\
& R \longrightarrow D
\end{aligned}
$$

And a sample derivation to test the grammar:

$$
\begin{aligned}
S & \Longrightarrow R T & & S \longrightarrow R T \\
& \Longrightarrow a R a T & & R \longrightarrow a R a \\
& \Longrightarrow a a R a a T & & R \longrightarrow a R a \\
& \Longrightarrow a a b R b a a T & & R \longrightarrow b R b \\
& \Longrightarrow a a b b R b b a a T & & R \longrightarrow b R b \\
& \Longrightarrow a a b b D b b a a T & & R \longrightarrow D
\end{aligned}
$$

Now create a pusher and have it move the first symbol of w^{R} to the top of the stack i.e. just past the T :

$$
\begin{aligned}
D & \longrightarrow D P \\
P a a & \longrightarrow a P a \\
P a b & \longrightarrow b a \\
P b a & \longrightarrow a P b \\
P a T & \longrightarrow T a \\
P b T & \longrightarrow T b
\end{aligned}
$$

Continuing the derivation:

$$
\begin{array}{ll}
\Longrightarrow a a b b D P b b a a T & D \longrightarrow D P \\
\Longrightarrow a a b b D b P b a a T & P b b \longrightarrow b P b \\
\Longrightarrow a a b b D b a P b a T & P b a \longrightarrow a P b \\
\Longrightarrow a a b b D b a a P b T & P b a \longrightarrow a P b \\
\Longrightarrow a a b b D b a a T b & P b T \longrightarrow T b
\end{array}
$$

Generate a new pusher and repeat:

$$
\begin{array}{ll}
\Longrightarrow a a b b D P b a a T b & D \longrightarrow D P \\
\Longrightarrow a a b b D a P b a T b & P b a \longrightarrow a P b \\
\Longrightarrow a a b b D a a P b T b & P b a \longrightarrow a P b \\
\Longrightarrow a a b b D a a T b b & P b T \longrightarrow T b
\end{array}
$$

And again:

$$
\begin{array}{ll}
\Longrightarrow a a b b D P a a T b b & D \longrightarrow D P \\
\Longrightarrow a a b b D a P a T b b & P b a \longrightarrow a P b \\
\Longrightarrow a a b b D a T a b b & P a T \longrightarrow T a
\end{array}
$$

Once more:

$$
\begin{array}{ll}
\Longrightarrow a a b b D P a T a b b & D \longrightarrow D P \\
\Longrightarrow a a b b D T a a b b & P a T \longrightarrow T a
\end{array}
$$

Now we have $w D T w$, so all that remains is to clean up the $D T$. Add a rule:

$$
D T \longrightarrow \epsilon
$$

And finish the derivation:

$$
\Longrightarrow a a b b a a b b \quad D T \longrightarrow \epsilon
$$

