
CPSC 229, Spring 2024

Find a grammar that generates the language

L = { anbncndn | n ∈ N }

Also explain how your grammar works.

Answer: This grammar works by first generating the correct number of non-terminals
corresponding to the desired symbols, then putting the non-terminals in the correct
order, and finally sweeping through the string, replacing non-terminals with the corre-
sponding terminal.

S −→ SABCD generate enough of each symbol, keeping the numbers equal

S −→ W set up the sweeper

BA −→ AB put the non-terminals in order

CA −→ AC

CB −→ BC

DA −→ AD

DB −→ BD

DC −→ CD

WA −→ aW sweep across, replacing non-terminals with terminals

W −→ X switch to the next stage of the sweeper

XB −→ bX

X −→ Y

Y C −→ cY

Y −→ Z

ZD −→ dZ

Z −→ ε eliminate the sweeper when done

Discussion: A good starting point can be a grammar for a similar language — un-
derstand how it works, then adapt it for the particular desired language. Recall the
grammar for anbncn that was discussed in class:



CPSC 229, Spring 2024

See the posted derivations examples for a more complete discussion of how this
grammar works, but the idea was that there were three stages — first the S −→ SABC
rule is used to generate enough As, Bs, and Cs (and because each application of the
rule generates one of each, there will be the same number of each in the end). Then,
the rules of the form BA −→ AB are used to get the non-terminals in the right order.
Finally, the rules of the form XA −→ aX in conjunction with rules of the form S −→ X
sweep through the string, replacing non-terminals with terminals.

So, for anbncndn:

S −→ SABCD generate enough of each symbol, keeping the numbers equal

S −→ W set up the sweeper

BA −→ AB put the non-terminals in order

CA −→ AC

CB −→ BC

DA −→ AD

DB −→ BD

DC −→ CD

WA −→ aW sweep across, replacing non-terminals with terminals

W −→ X switch to the next stage of the sweeper

XB −→ bX

X −→ Y

Y C −→ cY

Y −→ Z

ZD −→ dZ

Z −→ ε eliminate the sweeper when done



CPSC 229, Spring 2024

Find a grammar that generates the language

L = { a2n | n ∈ N }
Also explain how your grammar works.

Answer: The idea is to repeatedly double the number of symbols. We’ll use B to keep
track of how many times to do the doubling, and A to keep track of the number of as
to generate.

S −→ DTAE initial setup — D is the sweeper for the last round and E marks the end

T −→ TB generate n Bs

T −→ ε clean up the T once we have enough Bs

BA −→ AAB sweep the Bs through, doubling each A

DA −→ aD sweep the D through, converting the As to as

BE −→ E clean up once the B has done its job

DE −→ ε clean up once the D has done its job

Discussion: This is similar to an
2
, which was discussed in class. Recall that grammar:

See the posted derivations examples for a more complete discussion of how this
grammar works, but first recognize that an

2
= ann — i.e. the grammar is computing

the product of n×n. The idea of the grammar is to use the T −→ BTA rule to produce
n Bs and n As, then sweep the group of n Bs to the right, generating an a each time
BA arises — the rule BA −→ AaB moves the B past the A and generates the a. Each
time the group of n Bs goes past one A, n as are generated, so when the n Bs have
passed all n As, n2 as have been generated. E absorbs Bs that have made it to the
end (BE −→ E), and D eliminates As once all of the Bs have passed (DA −→ D).

So what about a2
n
? 2n isn’t the product of two numbers, it’s

n times︷ ︸︸ ︷
2× 2× . . .× 2× 2.

But this can be written (((1× 2)× 2)× 2)× . . . — the idea is to repeatedly double the
previous value. So, if we start with one A and double it each time a B passes...



CPSC 229, Spring 2024

Start the grammar with rules to create one A and n Bs:

S −→ DTAE

T −→ TB

T −→ ε

Let’s try generating a8 = a2
3

as an example and a test of the grammar. Use the
T −→ TB rule to generate n Bs:

S =⇒ DTAE S −→ DTAE

=⇒ DTBAE T −→ TB

=⇒ DTBBAE T −→ TB

=⇒ DTBBBAE T −→ TB

=⇒ DBBBAE T −→ ε

Now we want to move the Bs to the right, doubling the As each time. Add a rule:

BA −→ AAB

Then continue the derivation:

=⇒ DBBAABE BA −→ AAB

=⇒ DBAABABE BA −→ AAB

=⇒ DBAAAABBE BA −→ AAB

=⇒ DAABAAABBE BA −→ AAB

=⇒ DAAAABAABBE BA −→ AAB

=⇒ DAAAAAABABBE BA −→ AAB

=⇒ DAAAAAAAABBBE BA −→ AAB

Observe that we now have the right number of As. We’re done with the Bs, so
clean them up. Add a rule:

BE −→ E

Then continue the derivation:

=⇒ DAAAAAAAABBE BE −→ E

=⇒ DAAAAAAAABE BE −→ E

=⇒ DAAAAAAAAE BE −→ E

Next, sweep the D through to convert the As to as. (Why sweep instead of just a
rule A −→ a? Sweeping ensures that A can’t be converted to a until all of the Bs have
passed (and duplicated) that A.) Add a rule:

DA −→ aD



CPSC 229, Spring 2024

Then continue the derivation:

=⇒ aDAAAAAAAE DA −→ aD

=⇒ aaDAAAAAAE DA −→ aD

=⇒ aaaDAAAAAE DA −→ aD

=⇒ aaaaDAAAAE DA −→ aD

=⇒ aaaaaDAAAE DA −→ aD

=⇒ aaaaaaDAAE DA −→ aD

=⇒ aaaaaaaDAE DA −→ aD

=⇒ aaaaaaaaDE DA −→ aD

Finally, clean up the DE. Add a rule:

DE −→ ε

Then continue the derivation:

=⇒ aaaaaaaa DE −→ ε



CPSC 229, Spring 2024

Find a grammar that generates the language

L = { ww | w ∈ {a, b}∗ }

Also explain how your grammar works.

Answer: The strategy is to generate wwR, then reverse wR using the idea of a stack,
and finally clean up the remaining non-terminals.

S −→ RT T is a marker for the top of the stack used to reverse wR

R −→ aRa generate wwR

R −→ bRb

R −→ D add a divider between w and wR

D −→ DP create a pusher P to move symbols to the top of the stack

Paa −→ aPa push the symbol following the P to the top of the stack (the other side of the T )

Pab −→ bPa

Pba −→ aPb

Pbb −→ bPb

PaT −→ Ta

PbT −→ Tb

DT −→ ε clean up

Discussion: There wasn’t a direct example of this type of grammar discussed in class,
but we can still draw inspiration from the general idea of the anbncn grammar — first
generate the right symbols, then get them in the right order. We know how to generate
matched sets from context-free grammars — the following generates wwR:

S −→ aSa

S −→ bSb

S −→ ε

So then the idea is to reverse the second half of the generated string. Recall from
pushdown automata that a stack reverses things — constructing a pushdown automa-
ton to accept wcwR was discussed in class, and the idea was to push w onto the stack
one symbol at a time, then pop a matching symbol for each symbol of wR. How is
this relevant to our grammar? Let’s set up an intermediate step of the derivation as
follows:

wDPwRT



CPSC 229, Spring 2024

where D acts as a divider between w and wR, T sits just to the left of the top of the
stack, and P is a pusher that will push one symbol of wR to the top of the stack. To
do this, start with the following rules:

S −→ RT

R −→ aRa

R −→ bRb

R −→ D

And a sample derivation to test the grammar:

S =⇒ RT S −→ RT

=⇒ aRaT R −→ aRa

=⇒ aaRaaT R −→ aRa

=⇒ aabRbaaT R −→ bRb

=⇒ aabbRbbaaT R −→ bRb

=⇒ aabbDbbaaT R −→ D

Now create a pusher and have it move the first symbol of wR to the top of the stack
i.e. just past the T :

D −→ DP

Paa −→ aPa

Pab −→ bPa

Pba −→ aPb

PaT −→ Ta

PbT −→ Tb

Continuing the derivation:

=⇒ aabbDPbbaaT D −→ DP

=⇒ aabbDbPbaaT Pbb −→ bPb

=⇒ aabbDbaPbaT Pba −→ aPb

=⇒ aabbDbaaPbT Pba −→ aPb

=⇒ aabbDbaaTb PbT −→ Tb

Generate a new pusher and repeat:

=⇒ aabbDPbaaTb D −→ DP

=⇒ aabbDaPbaTb Pba −→ aPb

=⇒ aabbDaaPbTb Pba −→ aPb

=⇒ aabbDaaTbb PbT −→ Tb



CPSC 229, Spring 2024

And again:

=⇒ aabbDPaaTbb D −→ DP

=⇒ aabbDaPaTbb Pba −→ aPb

=⇒ aabbDaTabb PaT −→ Ta

Once more:

=⇒ aabbDPaTabb D −→ DP

=⇒ aabbDTaabb PaT −→ Ta

Now we have wDTw, so all that remains is to clean up the DT . Add a rule:

DT −→ ε

And finish the derivation:

=⇒ aabbaabb DT −→ ε


