
CPSC 229, Spring 2024

Draw a parse tree for the string (x+ y) ∗ z ∗ x according to the grammar below.

E −→ TA

A −→ +TA

A −→ ε

T −→ FB

B −→ ∗FB
B −→ ε

F −→ (E)

F −→ x

F −→ y

F −→ z

Answer:

Discussion:
The structure of a parse tree reflects the rules in the grammar. Each symbol on

the right side of a rule has its own branch. To illustrate this structure, consider a
derivation for (x+ y) ∗ z ∗ x:

CPSC 229, Spring 2024

E =⇒ TA

=⇒ FBA

=⇒ (E)BA

=⇒ (TA)BA

=⇒ (FBA)BA

=⇒ (xBA)BA

=⇒ (xA)BA

=⇒ (x+ TA)BA

=⇒ (x+ FBA)BA

=⇒ (x+ yBA)BA

=⇒ (x+ yA)BA

=⇒ (x+ y)BA

=⇒ (x+ y) ∗ FBA
=⇒ (x+ y) ∗ zBA
=⇒ (x+ y) ∗ z ∗ FBA
=⇒ (x+ y) ∗ z ∗ xBA
=⇒ (x+ y) ∗ z ∗ xA
=⇒ (x+ y) ∗ z ∗ x

The parse tree is shown on the right. The root of the parse tree (at the top) is the
start symbol in the derivation — E in this case. The first step of the derivation uses
the rule E −→ TA, and the two branches below the E in the parse tree are for T and
A. Next, the rule T −→ FB is used, and the two branches below the T in the parse
tree are for F and B. Note that (and) are symbols in this grammar, not part of the
production rule syntax.

CPSC 229, Spring 2024

Find a context-free grammar for the language { anbnck | n, k ∈ N }.

Answer:

S −→ TC

T −→ aTb

T −→ ε

C −→ cC

C −→ ε

Discussion:
When constructing context-free grammar rules, pay attention to both the order of

symbols and, when there’s a relationship between the numbers of two different elements,
generate matched sets of symbols.

For this problem, the as, bs, and cs come in an order — as first, then bs, then cs.
Also, there must be the same number of as as bs but there can be any number of cs.

For the as and bs, the way to generate a matched number is with a rule

T −→ aTb

This preserves the order (as before bs) and keeps the same number of as as bs. Note
that a rule like

T −→ abT

also preserves the same number of as as bs, but it doesn’t maintain the order:

T =⇒ abT =⇒ ababT

To generate any number of a symbol, use a rule like one of the following:

C −→ cC

C −→ Cc

Which is better, if it matters, depends on what happens to the C on the right side —
if it just goes away (C −→ ε), then either rule is fine. But it C is eventually replaced
by something else, whether that something else should come before the cs generated
or after dictates which rule is correct.

Finally, put these rules together with a rule that establishes the start symbol and
sets the ordering of the elements:

S −→ TC

Check that this works with a few steps of a derivation:

S =⇒ TC =⇒ aTbC =⇒ aaTbbC =⇒ aaTbbcC =⇒ aaTbbccC

What remains is a few rules to clean up the T s and Cs. Since n, k ∈ N, there
doesn’t need to be at least one of any symbol so T −→ ε and C −→ ε can do that
cleanup.

CPSC 229, Spring 2024

Create a pushdown automaton that accepts the language

L = { w ∈ {a, b}∗ | na(w) = nb(w) and consecutive b’s only occur in multiples of 3 }

Answer:

Discussion: Keep in mind the two key elements of a pushdown automaton and the role
each plays:

� The state transitions consume the input string, and states are used for tracking
specific numbers and sequences of symbols.

� The stack is used for matching — one symbol with another, or a count of symbols
with another count.

Start with the states. “Consecutive b’s only occur in multiples of 3” is a specific
numbers and sequences of symbols thing, so first build an NFA for that:

CPSC 229, Spring 2024

Then address the stack. na(w) = nb(w) is a matching thing, so that is the stack’s
job. Push when there’s an a and pop when there’s a b to match numbers:

However, there’s a problem — for a string like abbbaa, some of the as are after bs so
there isn’t yet enough on the stack to pop three times for all the bs. The stack needs
to be used not just to count as, but to count whatever there is an excess of.

Now reading a a means popping a b if there is one on the stack (an excess of bs) or
pushing an a (an excess of as), and reading a b means popping an a if there is one on
the stack (an excess of as) or pushing a b (an excess of bs). This is not a deterministic
automaton, but that’s OK. (The push option is always an option, but remember that
the stack has to be empty in order to accept — if things pushed aren’t popped when
possible, the stack won’t be empty in the end.)

