Draw a parse tree for the string $(x+y) * z * x$ according to the grammar below.

$$
\begin{aligned}
& E \longrightarrow T A \\
& A \longrightarrow+T A \\
& A \longrightarrow \epsilon \\
& T \longrightarrow F B \\
& B \longrightarrow * F B \\
& B \longrightarrow \epsilon \\
& F \longrightarrow(E) \\
& F \longrightarrow x \\
& F \longrightarrow y \\
& F \longrightarrow z
\end{aligned}
$$

Answer:

Discussion:
The structure of a parse tree reflects the rules in the grammar. Each symbol on the right side of a rule has its own branch. To illustrate this structure, consider a derivation for $(x+y) * z * x$:

$$
\begin{aligned}
E & \Longrightarrow T A \\
& \Longrightarrow F B A \\
& \Longrightarrow(E) B A \\
& \Longrightarrow(T A) B A \\
& \Longrightarrow(F B A) B A \\
& \Longrightarrow(x B A) B A \\
& \Longrightarrow(x A) B A \\
& \Longrightarrow(x+F A) B A \\
& \Longrightarrow(x+y B A) B A \\
& \Longrightarrow(x+y A) B A \\
& \Longrightarrow(x+y) B A \\
& \Longrightarrow(x+y) * F B A \\
& \Longrightarrow(x+y) * z B A \\
& \Longrightarrow(x+y) * z * F B A \\
& \Longrightarrow(x+y) * z * x B A \\
& \Longrightarrow(x+y) * z * x A \\
& \Longrightarrow(x+y) * z * x
\end{aligned}
$$

The parse tree is shown on the right. The root of the parse tree (at the top) is the start symbol in the derivation $-E$ in this case. The first step of the derivation uses the rule $E \longrightarrow T A$, and the two branches below the E in the parse tree are for T and A. Next, the rule $T \longrightarrow F B$ is used, and the two branches below the T in the parse tree are for F and B. Note that (and) are symbols in this grammar, not part of the production rule syntax.

Find a context-free grammar for the language $\left\{a^{n} b^{n} c^{k} \mid n, k \in \mathbb{N}\right\}$.
Answer:

$$
\begin{aligned}
& S \longrightarrow T C \\
& T \longrightarrow a T b \\
& T \longrightarrow \epsilon \\
& C \longrightarrow c C \\
& C \longrightarrow \epsilon
\end{aligned}
$$

Discussion:
When constructing context-free grammar rules, pay attention to both the order of symbols and, when there's a relationship between the numbers of two different elements, generate matched sets of symbols.

For this problem, the $a \mathrm{~s}, b \mathrm{~s}$, and $c \mathrm{~s}$ come in an order - $a \mathrm{~s}$ first, then $b \mathrm{~s}$, then $c \mathrm{~s}$. Also, there must be the same number of a as b s but there can be any number of $c s$.

For the $a \mathrm{~s}$ and $b \mathrm{~s}$, the way to generate a matched number is with a rule

$$
T \longrightarrow a T b
$$

This preserves the order (a s before $b s$) and keeps the same number of $a s$ as $b s$. Note that a rule like

$$
T \longrightarrow a b T
$$

also preserves the same number of $a s$ as $b \mathrm{~s}$, but it doesn't maintain the order:

$$
T \Longrightarrow a b T \Longrightarrow a b a b T
$$

To generate any number of a symbol, use a rule like one of the following:

$$
\begin{aligned}
& C \longrightarrow c C \\
& C \longrightarrow C c
\end{aligned}
$$

Which is better, if it matters, depends on what happens to the C on the right side if it just goes away $(C \longrightarrow \epsilon)$, then either rule is fine. But it C is eventually replaced by something else, whether that something else should come before the cs generated or after dictates which rule is correct.

Finally, put these rules together with a rule that establishes the start symbol and sets the ordering of the elements:

$$
S \longrightarrow T C
$$

Check that this works with a few steps of a derivation:

$$
S \Longrightarrow T C \Longrightarrow a T b C \Longrightarrow a a T b b C \Longrightarrow a a T b b c C \Longrightarrow a a T b b c c C
$$

What remains is a few rules to clean up the T s and C s. Since $n, k \in \mathbb{N}$, there doesn't need to be at least one of any symbol so $T \longrightarrow \epsilon$ and $C \longrightarrow \epsilon$ can do that cleanup.

Create a pushdown automaton that accepts the language
$L=\left\{w \in\{a, b\}^{*} \mid n_{a}(w)=n_{b}(w)\right.$ and consecutive b 's only occur in multiples of 3$\}$

Answer:

Discussion: Keep in mind the two key elements of a pushdown automaton and the role each plays:

- The state transitions consume the input string, and states are used for tracking specific numbers and sequences of symbols.
- The stack is used for matching - one symbol with another, or a count of symbols with another count.

Start with the states. "Consecutive b 's only occur in multiples of 3 " is a specific numbers and sequences of symbols thing, so first build an NFA for that:

Then address the stack. $n_{a}(w)=n_{b}(w)$ is a matching thing, so that is the stack's job. Push when there's an a and pop when there's a b to match numbers:

However, there's a problem - for a string like abbbaa, some of the a s are after b so there isn't yet enough on the stack to pop three times for all the $b s$. The stack needs to be used not just to count as, but to count whatever there is an excess of.

Now reading a a means popping a b if there is one on the stack (an excess of $b \mathrm{~s}$) or pushing an a (an excess of a s), and reading a b means popping an a if there is one on the stack (an excess of $a \mathrm{~s}$) or pushing a b (an excess of $b \mathrm{~s}$). This is not a deterministic automaton, but that's OK. (The push option is always an option, but remember that the stack has to be empty in order to accept - if things pushed aren't popped when possible, the stack won't be empty in the end.)

