
CPSC 229, Spring 2024

Prove the correctness of the following code, that is, prove that the statement labelled
“end result” is true.

public static void sort(int[] arr) {

for ( int i = 1 ; i < arr.length ; i++) {

// loop invariant: arr[0..i-1] (inclusive) is sorted in increasing order

int elt = arr[i]; // current element to put in place

// shift - move elements of arr[0..i-1] that are

// greater than elt one spot to the right

int shift = i - 1;

for ( ; shift >= 0 && arr[shift] > elt ;

shift = shift - 1) {

arr[shift + 1] = arr[shift];

}

// put element in place

arr[shift + 1] = elt;

}

// end result: arr[0..arr.length-1] (inclusive) is sorted in

// increasing order

}

Discussion:
The key takeaway from this is to see how induction can be used to show correctness

of a loop in code. The main ingredient is a statement called a loop invariant which,
in correctly functioning code, is true at the beginning of each repetition of the loop.
Induction is used to show that the invariant holds at the beginning of the first iteration,
and that if the invariant holds at the beginning of some iteration, what is done in the
loop body is sufficient to make the invariant still hold at the beginning of the next
iteration.

Let the loop invariant be as stated: P (i) is statement that arr[0..i-1] (inclusive)
is sorted in increasing order. (Observe that when the loop ends, i = arr.length and
P (arr.length) is the statement that arr[0..arr.length-1] (inclusive) is sorted in
increasing order — i.e. the whole array is sorted. Thus, if the loop invariant holds,
we can combine that with the loop termination condition to conclude that the loop
works.)

For proof by induction, we need to show P (1) to show that the loop invariant is
true at the beginning (i = 1 the first time through the loop), and that P (i)→ P (i+ 1)
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(if the invariant holds for i, it still holds after the next repetition of the loop when i
has been incremented).

Show P (1). P (1) is the statement that arr[0..0] (inclusive) is sorted in increasing
order (because i− 1 = 0 when i = 1). This is just arr[0] — the first slot of the array
— and one element is automatically in sorted order as there’s nothing else for it to be
out of order with respect to. So P (1) is true.

Show P (i) → P (i + 1). Assume P (i), that is, assume arr[0..i-1] is sorted in
increasing order. We need to show that after the next iteration through the loop,
arr[0..i] is sorted in increasing order.

So what happens in the loop? The inner for shifts elements — the idea is to move
bigger elements out of the way so that arr[i] can be inserted in the correct place in
the sorted portion of the array. We need to address three things: that the order of
elements originally in arr[0..i-1] is not changed (because they were in increasing
order), that arr[i] is put in the right place amongst the sorted elements, and that no
element gets lost because it is overwritten with another.

First, the inner for loop shifts elements one spot to the right — arr[shift + 1]

= arr[shift] — keeping the order of the elements shifted. At some point the loop
stops, so we have a situation where the first part of the array hasn’t been touched,
arr[shift] is the rightmost of the untouched elements, and then the elements that
were in arr[shift+1..i-1] have been copied into arr[shift+2..i] with their or-
dering preserved. (Reasoning about what a chunk of code is doing can be tricky and
often takes experience; doing some examples where you make up an array with some
numbers in it and trace through the code by hand on those examples can be very
helpful for gaining understanding of what is going on.) So the order of the elements
originally in arr[0..i-1] has changed — they were in increasing order, and they still
are.

Next, we need to show that arr[i] is put in the right place. It goes in arr[shift+1]

when the inner for loop ends. So what do we know about that spot? The loop con-
dition is shift >= 0 && arr[shift] > elt, which means there are two reasons why
the loop might have ended: shift could have become -1 (and thus shift >= 0 is no
longer true), or arr[shift] <= elt (and thus arr[shift] > elt is no longer true).

Consider shift = -1 first. In that case, the loop has shifted everything in arr[0..i-1]

to the right and all of those elements are greater than elt. (If not, the loop would
have ended earlier.) That means elt should go before everything else, so putting it in
arr[0] is the right place.

Now consider arr[shift] <= elt. The loop has shifted everything in arr[shift+1..i-1]

to the right and all of those are greater than elt. (If not, the loop would have ended
earlier.) That means elt should go before those elements, but not before arr[shift]

or anything before it — so arr[shift+1] is the right place.
Finally, we need to show that nothing is lost. The inner for loop shifts everything

in arr[shift+1..i-1] to the right, so putting elt into arr[shift+1] is safe.
So, if arr[0..i-1] was sorted before the current loop iteration, arr[0..i] will be

sorted after and the loop invariant holds. Combined with that i = arr.length when
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the loop exits, we can conclude the end result: arr[0..arr.length-1] (inclusive) is
sorted in increasing order.

Prove the correctness of the following code, that is, that hanoi produces a valid list of
moves to move n disks from peg from to peg to. “Valid” means that only one disk is
moved at a time, and it is never the case that a bigger disk is put on top of a smaller
disk.

public static void hanoi(int n, int from, int to, int spare) {

if (n == 1) {

System.out.println("move disk from " + from + " to " + to);

} else {

hanoi(n - 1, from, spare, to);

System.out.println("move disk from " + from + " to " + to);

hanoi(n - 1, spare, to, from);

}

}

Discussion:
The key takeaway from this is to see how induction can be used to show correctness

of a recursive subroutine.

Let P (n) be the statement that hanoi(n,from,to,spare) generates a valid list of
moves for n ≥ 1 disks from peg from to peg to.

For proof by induction, we need to show P (1) and that P (k)→ P (k + 1).
Show P (1). When n = 1, the solution is simply the one instruction

move disk from peg ’from’ to peg ’to’

This moves the disk from peg from to peg to, only moves a single disk at a time,
and as there is only one disk, it is never the case that there is a bigger disk on top of
a smaller disk.

Show P (k)→ P (k+1). Assume P (k), that is, hanoi(k,from,to,spare) generates
a valid list of moves to move k disks from peg from to peg to. What happens for
P (k + 1)? The code contains three steps:

hanoi(k, from, spare, to);

move disk from peg ’from’ to peg ’to’

hanoi(k, spare, to, from);

By the induction hypothesis, hanoi(k, from, spare, to) moves k disks from peg
from to peg spare. Only a single disk is moved at a time, and amongst the k disks,
there is never a bigger disk on top of a smaller disk. There is, however, disk k + 1 on
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the bottom of peg from, but as this is bigger than everything else, putting any of the
k disks on top of it will not violate the rules.

The instruction

move disk from peg ’from’ to peg ’to’

only moves a single disk and, as peg to is empty, does not place a bigger disk on top
of a smaller one. It results in the biggest disk being on peg to, as desired.

By the induction hypothesis, hanoi(k, spare, to, from) moves k disks from
peg spare to peg to. This produces a valid list of moves by the same reasoning as
for hanoi(k, from, spare, to), and causes the other k disks end up on peg to as
desired.

Thus all k + 1 disks end up on peg to and none of the rules of the game were
violated.


