Prove that $n^{3}+3 n^{2}+2 n$ is divisible by 3 for all natural numbers n.
Answer:
Proof. Let $P(n)$ be the statement that $n^{3}+3 n^{2}+2 n$ is divisible by 3 . We use induction to show that $P(n)$ is true for all $n \geq 0$.

Base case: Consider the case $n=0$. Then $n^{3}+3 n^{2}+2 n=0^{3}+3(0)^{2}+2(0)=0$, which is divisible by 3 .

Inductive case: Let $k>0$ be an arbitrary number and assume that $P(k)$ is true, meaning that $k^{3}+3 k^{2}+2 k$ is divisible by 3 . We want to show that $P(k+1)$ is true, in other words, show that $(k+1)^{3}+3(k+1)^{2}+2(k+1)$ is divisible by 3 .

$$
\begin{aligned}
(k+1)^{3}+3(k+1)^{2}+2(k+1) & =k^{3}+3 k^{2}+3 k+1+3 k^{2}+6 k+3+2 k+2 \\
& =k^{3}+6 k^{2}+11 k+3 \\
& =\left(k^{3}+3 k^{2}+2 k\right)+\left(3 k^{2}+9 k+3\right)
\end{aligned}
$$

By the induction hypothesis, $k^{3}+3 k^{2}+2 k$ is divisible by 3 so there is an integer c such that $k^{3}+3 k^{2}+2 k=3 c$.

$$
\begin{aligned}
(k+1)^{3}+3(k+1)^{2}+2(k+1) & =3 c+\left(3 k^{2}+9 k+3\right) \\
& =3 c+3\left(k^{2}+3 k+1\right) \\
& =3\left(c+k^{2}+3 k+1\right)
\end{aligned}
$$

Since c and k are integers, $c+k^{2}+3 k+1$ is integer and thus $P(k+1)$ is divisible by 3 .

Discussion:
$P(n)$ is that $n^{3}+3 n^{2}+2 n$ is divisible by 3 . To prove this by induction, we need to show $P(0) \wedge \forall k(P(k) \rightarrow P(k+1))$.

Start with the base case, $P(0)$. Plugging in $n=0$ yields $0^{3}+3(0)^{2}+2(0)=0$, which is divisible by 3 .

Next, the induction case. Let k be any natural number and assume $\mathrm{P}(\mathrm{k})$, that is, that $k^{3}+3 k^{2}+2 k$ is divisible by 3 . Now we need to show $P(k+1)$.

A good starting point is to determine what $P(k+1)$ actually is - plug $k+1$ in for n : $P(k+1)$ is the statement that $(k+1)^{3}+3(k+1)^{2}+2(k+1)$ is divisible by 3 .

Now let's try to make use of the induction hypothesis: $k^{3}+3 k^{2}+2 k$ is divisible by 3. Let's see if we can rearrange $(k+1)^{3}+3(k+1)^{2}+2(k+1)$ a bit so that this can be used...

$$
\begin{aligned}
(k+1)^{3}+3(k+1)^{2}+2(k+1) & =k^{3}+3 k^{2}+3 k+1+3 k^{2}+6 k+3+2 k+2 \\
& =k^{3}+6 k^{2}+11 k+3 \\
& =\left(k^{3}+3 k^{2}+2 k\right)+\left(3 k^{2}+9 k+3\right)
\end{aligned}
$$

"x divisible by 3 " means that there is an integer c such that $x=3 c$, and the induction hypothesis is that $k^{3}+3 k^{2}+2 k$ is divisible by $3-$

$$
\begin{aligned}
(k+1)^{3}+3(k+1)^{2}+2(k+1) & =3 c+\left(3 k^{2}+9 k+3\right) \\
& =3 c+3\left(k^{2}+3 k+1\right) \\
& =3\left(c+k^{2}+3 k+1\right)
\end{aligned}
$$

c is an integer by the definition of "divisible" and $k^{2}+3 k+1$ is an integer because k is an integer, so this last line meets the definition for " $(k+1)^{3}+3(k+1)^{2}+2(k+1)$ is divisible by 3 ".

Prove that

$$
\sum_{i=0}^{n} r^{i}=\frac{1-r^{n+1}}{1-r}
$$

for any natural number n and for any real number r such that $r \neq 1$.
Answer:
Proof. Let $P(n)$ be the statement that

$$
\sum_{i=0}^{n} r^{i}=\frac{1-r^{n+1}}{1-r}
$$

where $r \neq 1$. We use induction to show that $P(n)$ is true for all $n \geq 0$.
Base case: Consider the case $n=0$. Then

$$
\begin{aligned}
\sum_{i=0}^{n} r^{i} & =\sum_{i=0}^{0} r^{i} \\
& =r^{0} \\
& =1
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{1-r^{n+1}}{1-r} & =\frac{1-r^{1}}{1-r} \\
& =\frac{1-r}{1-r} \\
& =1
\end{aligned}
$$

and thus $P(0)$ is true.
Inductive case. Let $k>0$ be an arbitrary number and assume that $P(k)$ is true, meaning that $\sum_{i=0}^{k} r^{i}=\frac{1-r^{k+1}}{1-r}$. We want to show that $P(k+1)$ is true, in other words, show that $\sum_{i=0}^{k+1} r^{i}=\frac{1-r^{k+2}}{1-r}$.

$$
\begin{aligned}
\sum_{i=0}^{k+1} r^{i} & =\sum_{i=0}^{k} r^{i}+r^{k+1} \\
& =\frac{1-r^{k+1}}{1-r}+r^{k+1} \\
& =\frac{1-r^{k+1}+r^{k+1}(1-r)}{1-r} \\
& =\frac{1-r^{k+1}+r^{k+1}-r^{k+2}}{1-r} \\
& =\frac{1-r^{k+2}}{1-r}
\end{aligned}
$$

Thus $\sum_{i=0}^{k+1} r^{i}=\frac{1-r^{k+2}}{1-r}$.

Discussion:
$P(n)$ is that $\sum_{i=0}^{n} r^{i}=\frac{1-r^{n+1}}{1-r}$. To prove this by induction, we need to show $P(0) \wedge$ $\forall k(P(k) \rightarrow P(k+1))$.

Start with the base case, $\mathrm{P}(0)$. Plugging in $n=O$ yields $\sum_{i=0}^{0} r^{i}=r^{0}=1$. On the other side of the equation, $\frac{1-r^{0+1}}{1-r}=\frac{1-r}{1-r}=1$. Both sides are $1, P(0)$ is true.

Next, the induction case. Let k be any natural number and assume $P(k)$, that is,

$$
\sum_{i=0}^{k} r^{i}=\frac{1-r^{k+1}}{1-r}
$$

Now we need to show $P(k+1)$:

$$
\sum_{i=0}^{k+1} r^{i}=\frac{1-r^{k+2}}{1-r}
$$

Let's try to make use of the induction hypothesis: $\sum_{i=0}^{k} r^{i}=\frac{1-r^{k+1}}{1-r}$. Let's see if we can rearrange $\sum_{i=0}^{k+1} r^{i}$ a bit to see how this can be used. Recall the definition of the \sum notation:

$$
\sum_{i=0}^{n} f(i)=f(0)+f(1)+f(2)+\ldots+f(n)
$$

So

$$
\begin{aligned}
\sum_{i=0}^{k+1} r^{i} & =r^{0}+r^{1}+r^{2}+\ldots+r^{k}+r^{k+1} \\
& =\sum_{i=0}^{k} r^{i}+r^{k+1}
\end{aligned}
$$

Now we can use the induction hypothesis:

$$
\begin{aligned}
\sum_{i=0}^{k+1} r^{i} & =\sum_{i=0}^{k} r^{i}+r^{k+1} \\
& =\frac{1-r^{k+1}}{1-r}+r^{k+1} \\
& =\frac{1-r^{k+1}+r^{k+1}(1-r)}{1-r} \\
& =\frac{1-r^{k+1}+r^{k+1}-r^{k+2}}{1-r} \\
& =\frac{1-r^{k+2}}{1-r}
\end{aligned}
$$

...and the desired result:

$$
\sum_{i=0}^{k+1} r^{i}=\frac{1-r^{k+2}}{1-r}
$$

