Give a DFA that accepts the language accepted by the following NFA.

Discussion: Let D be the DFA and N be the NFA.

The start state of D corresponds to $\partial^*(p_0, \epsilon)$, that is, the set of states of N containing N's start state and everything reachable from that state via ϵ -transitions. (There are no ϵ -transitions here, so it is just $\{p_0\}$.)

Now, repeatedly find a state q in D whose out-transitions haven't been added, and add them: for each input symbol a, look at all of N's states that can be reached from any one of the p_i corresponding to q by consuming a (including any subsequent ϵ -transitions). Add state $q' = \bigcup \partial^*(p_i, a)$ if not already present and add transition $\delta(q, a) = q'$ to D.

 q_0 doesn't have out-transitions yet. From p_0 , a goes to p_0 , so add a transition $q_0 \rightarrow q_0$ to D. From p_0 , b goes to p_0 or p_1 , so add a state $\{p_0, p_1\}$ and a transition from q_0 to that state.

 q_1 doesn't have out-transitions yet. From p_0 , a goes to p_0 and from p_1 , a goes to p_2 . From p_0 , b goes to p_0 or p_1 and from p_1 , b goes to p_2 .

 q_2 doesn't have out-transitions yet. From p_0 , a goes to p_0 and from p_2 , a goes to p_3 . From p_0 , b goes to p_0 or p_1 and from p_2 , b goes to p_3 .

 q_3 doesn't have out-transitions yet. From p_0 , a goes to p_0 , from p_1 , a goes to p_2 , and from p_2 , a goes to p_3 . From p_0 , b goes to p_0 or p_1 , from p_1 , b goes to p_2 , and from p_2 , b goes to p_3 .

 q_4 doesn't have out-transitions yet. From p_0 , a goes to p_0 , and from p_3 , a goes nowhere. From p_0 , b goes to p_0 or p_1 , and from p_3 , b goes nowhere.

 q_5 doesn't have out-transitions yet. From p_0 , a goes to p_0 , from p_1 , a goes to p_2 , and from p_3 , a goes nowhere. From p_0 , b goes to p_0 or p_1 , from p_1 , b goes to p_2 , and from p_3 , b goes nowhere.

 q_6 doesn't have out-transitions yet. From p_0 , a goes to p_0 , from p_2 , a goes to p_3 , and from p_3 , a goes nowhere. From p_0 , b goes to p_0 or p_1 , from p_2 , b goes to p_3 , and from p_3 , b goes nowhere.

 q_7 doesn't have out-transitions yet. From p_0 , a goes to p_0 , from p_1 , a goes to p_2 , from p_2 , a goes to p_3 , and from p_3 , a goes nowhere. From p_0 , b goes to p_0 or p_1 , from p_1 , b goes to p_2 , from p_2 , b goes to p_3 , and from p_3 , b goes nowhere.

The final step is that any state of D containing a final state of N is a final state.

3. Give a DFA that accepts the language accepted by the following NFA. (Be sure to note that, for example, it is possible to reach both q_1 and q_3 from q_0 on consumption of an a, because of the ε -transition.)

Answer:

Discussion: Let D be the DFA and N be the NFA.

The start state of D corresponds to $\partial^*(q_0, \epsilon)$, that is, the set of states of N containing N's start state and everything reachable from that state via ϵ -transitions. (There are no ϵ -transitions from q_o , so it is just $\{q_0\}$.)

Now, repeatedly find a state p in D whose out-transitions haven't been added, and add them: for each input symbol a, look at all of N's states that can be reached from any one of the q_i corresponding to p by consuming a (including any subsequent ϵ -transitions). Add state $p' = \bigcup \partial^*(q_i, a)$ if not already present and add transition $\delta(p, a) = p'$ to D.

 p_0 doesn't have out-transitions yet. From q_0 , a goes to q_0 or q_1 , then ϵ -transitions get to q_3 . From q_0 , b goes to q_2 , then ϵ -transitions get to q_1 and q_3 .

 p_1 doesn't have out-transitions yet. From q_0 , a goes to q_0 or q_1 , then ϵ -transitions get to q_3 ; from q_1 , a goes nowhere; and from q_3 , a goes to q_3 . From q_0 , b goes to q_2 , then ϵ -transitions get to q_1 and q_3 ; from q_1 , b goes to q_1 , then ϵ -transitions get to q_3 ; and from q_3 , b goes to q_4 .

 p_2 doesn't have out-transitions yet. From q_1 , a goes nowhere; from q_2 , a goes to q_2 or q_4 , then ϵ -transitions get to q_1 and q_3 ; and from q_3 , a goes to q_3 . From q_1 , b goes to q_1 , then ϵ -transitions get to q_3 ; from q_2 , b goes nowhere; and from q_3 , b goes to q_4 .

 p_3 doesn't have out-transitions yet. From q_1 , a goes nowhere; from q_2 , a goes to q_2 or q_4 , then ϵ -transitions get to q_1 and q_3 ; from q_3 , a goes to q_3 ; and from q_4 , a goes nowhere. From q_1 , b goes to q_1 , then ϵ -transitions get to q_3 ; from q_2 , b goes nowhere; from q_3 , b goes to q_4 ; and from q_4 , b goes to q_4 .

 p_4 doesn't have out-transitions yet. From q_1 , a goes nowhere; from q_3 , a goes to q_3 ; and from q_4 , a goes nowhere. From q_1 , b goes to q_1 , then ϵ -transitions get to q_3 ; from q_3 , b goes to q_4 ; and from q_4 , b goes to q_4 .

 p_5 doesn't have out-transitions yet. From q_3 , a goes to q_3 . From q_3 , b goes to q_4 .

 p_6 doesn't have out-transitions yet. From q_4 , a goes nowhere. From q_4 , b goes to q_4 .

The final step is that any state of D containing a final state of N is a final state.

