Give a DFA that accepts the language accepted by the following NFA.

Answer:

Discussion: Let D be the DFA and N be the NFA.
The start state of D corresponds to $\partial^{*}\left(p_{0}, \epsilon\right)$, that is, the set of states of N containing N 's start state and everything reachable from that state via ϵ-transitions. (There are no ϵ-transitions here, so it is just $\left\{p_{0}\right\}$.)

q0

Now, repeatedly find a state q in D whose out-transitions haven't been added, and add them: for each input symbol a, look at all of N 's states that can be reached from any one of the p_{i} corresponding to q by consuming a (including any subsequent
ϵ-transitions). Add state $q^{\prime}=\bigcup \partial^{*}\left(p_{i}, a\right)$ if not already present and add transition $\delta(q, a)=q^{\prime}$ to D.
q_{0} doesn't have out-transitions yet. From p_{0}, a goes to p_{0}, so add a transition $q_{0} \rightarrow q_{0}$ to D. From p_{0}, b goes to p_{0} or p_{1}, so add a state $\left\{p_{0}, p_{1}\right\}$ and a transition from q_{0} to that state.

q_{1} doesn't have out-transitions yet. From p_{0}, a goes to p_{0} and from p_{1}, a goes to p_{2}. From p_{0}, b goes to p_{0} or p_{1} and from p_{1}, b goes to p_{2}.

q_{2} doesn't have out-transitions yet. From p_{0}, a goes to p_{0} and from p_{2}, a goes to p_{3}. From p_{0}, b goes to p_{0} or p_{1} and from p_{2}, b goes to p_{3}.

q_{3} doesn't have out-transitions yet. From p_{0}, a goes to p_{0}, from p_{1}, a goes to p_{2}, and from p_{2}, a goes to p_{3}. From p_{0}, b goes to p_{0} or p_{1}, from p_{1}, b goes to p_{2}, and from p_{2}, b goes to p_{3}.

q_{4} doesn't have out-transitions yet. From p_{0}, a goes to p_{0}, and from p_{3}, a goes nowhere. From p_{0}, b goes to p_{0} or p_{1}, and from p_{3}, b goes nowhere.

q_{5} doesn't have out-transitions yet. From p_{0}, a goes to p_{0}, from p_{1}, a goes to p_{2}, and from p_{3}, a goes nowhere. From p_{0}, b goes to p_{0} or p_{1}, from p_{1}, b goes to p_{2}, and from p_{3}, b goes nowhere.

q_{6} doesn't have out-transitions yet. From p_{0}, a goes to p_{0}, from p_{2}, a goes to p_{3}, and from p_{3}, a goes nowhere. From p_{0}, b goes to p_{0} or p_{1}, from p_{2}, b goes to p_{3}, and from p_{3}, b goes nowhere.

q_{7} doesn't have out-transitions yet. From p_{0}, a goes to p_{0}, from p_{1}, a goes to p_{2}, from p_{2}, a goes to p_{3}, and from p_{3}, a goes nowhere. From p_{0}, b goes to p_{0} or p_{1}, from p_{1}, b goes to p_{2}, from p_{2}, b goes to p_{3}, and from p_{3}, b goes nowhere.

The final step is that any state of D containing a final state of N is a final state.

3. Give a DFA that accepts the language accepted by the following NFA. (Be sure to note that, for example, it is possible to reach both q_{1} and q_{3} from q_{0} on consumption of an a, because of the ε-transition.)

Answer:

Discussion: Let D be the DFA and N be the NFA.
The start state of D corresponds to $\partial^{*}\left(q_{0}, \epsilon\right)$, that is, the set of states of N containing N 's start state and everything reachable from that state via ϵ-transitions. (There are no ϵ-transitions from q_{o}, so it is just $\left\{q_{0}\right\}$.)

p0

Now, repeatedly find a state p in D whose out-transitions haven't been added, and add them: for each input symbol a, look at all of N 's states that can be reached from any one of the q_{i} corresponding to p by consuming a (including any subsequent ϵ-transitions). Add state $p^{\prime}=\bigcup \partial^{*}\left(q_{i}, a\right)$ if not already present and add transition $\delta(p, a)=p^{\prime}$ to D.
p_{0} doesn't have out-transitions yet. From q_{0}, a goes to q_{0} or q_{1}, then ϵ-transitions get to q_{3}. From q_{0}, b goes to q_{2}, then ϵ-transitions get to q_{1} and q_{3}.

p_{1} doesn't have out-transitions yet. From q_{0}, a goes to q_{0} or q_{1}, then ϵ-transitions get to q_{3}; from q_{1}, a goes nowhere; and from q_{3}, a goes to q_{3}. From q_{0}, b goes to q_{2}, then ϵ-transitions get to q_{1} and q_{3}; from q_{1}, b goes to q_{1}, then ϵ-transitions get to q_{3}; and from q_{3}, b goes to q_{4}.

p_{2} doesn't have out-transitions yet. From q_{1}, a goes nowhere; from q_{2}, a goes to q_{2} or q_{4}, then ϵ-transitions get to q_{1} and q_{3}; and from q_{3}, a goes to q_{3}. From q_{1}, b goes to q_{1}, then ϵ-transitions get to q_{3}; from q_{2}, b goes nowhere; and from q_{3}, b goes to q_{4}.

p_{3} doesn't have out-transitions yet. From q_{1}, a goes nowhere; from q_{2}, a goes to q_{2} or q_{4}, then ϵ-transitions get to q_{1} and q_{3}; from q_{3}, a goes to q_{3}; and from q_{4}, a goes nowhere. From q_{1}, b goes to q_{1}, then ϵ-transitions get to q_{3}; from q_{2}, b goes nowhere; from q_{3}, b goes to q_{4}; and from q_{4}, b goes to q_{4}.

p_{4} doesn't have out-transitions yet. From q_{1}, a goes nowhere; from q_{3}, a goes to q_{3}; and from q_{4}, a goes nowhere. From q_{1}, b goes to q_{1}, then ϵ-transitions get to q_{3}; from q_{3}, b goes to q_{4}; and from q_{4}, b goes to q_{4}.

p_{5} doesn't have out-transitions yet. From q_{3}, a goes to q_{3}. From q_{3}, b goes to q_{4}.

p_{6} doesn't have out-transitions yet. From q_{4}, a goes nowhere. From q_{4}, b goes to q_{4}.

The final step is that any state of D containing a final state of N is a final state.

