CPSC 229, Spring 2024

Write strings generated by the following grammar. Illustrate the different possibilities.

E:=T[+T]...
T:=F[xF]...
F::: 77(77 E77)77 |x | y | z

Answer: z, (z +y*x), ((z*y) + x * z) — these show the different operators and how

expressions can be nested.

Discussion: “Illustrate the different possibilities” means to cover the different rules to

show the various options. Some examples:

F=T FEFE=T E=T
— I — F — F
— — 7 E") — 7 E")
— (T + T7) — (T + T7Y
— " (F 4+ T — " F 4+ Ty
— " F + Fx F”) =70"CE") +T")
="z + F x F’)y =7070T") +T")
— """z +yx F") =707 F x« F7)Y + T7")
— "z +y xz2") =707z x F7Y + T7)
=707z xy”) + T7)
= """ xy”) + F x F7)
=707z xy”) 4+ x x FY)
=707z xy”) + xx 27)

CPSC 229, Spring 2024

Write the following BNF grammar using the standard context-free grammar notation.

E:=T[+T]...
T:=F[«F]...
F::: 7’(77 E)?)W |I | y | z

Answer:

E—TA
A— +TA
A— ¢

T — FB

B — +FB
B —¢
F—7CE")
Fr—x
F—y
F—z

Discussion: The rule F' :="(" E”)” | z | y | z expresses four alternatives for F:

F—7C E”)
F—z
F—y
F—z
For £ =T [+ T]..., there are two possibilities — E — T" and something which
can produce repetitions of 4+ T following a T'. Repetitions takes the form A — +T A

— a new non-terminal is needed besides E because of the initial Tin T [+ T |.. ..

A — € ends the repetition. Finally, the “following a T part” comes from a rule
E—TA.

E—TA
A— +TA
A—e
(E — T isn’t needed because £ = T can be derived from E — TA and

A—e¢)
The same strategy can be used for the final BNF rule:

CPSC 229, Spring 2024

T—FB
B — +FB
B — €

CPSC 229, Spring 2024

Show that the following grammar is ambiguous by finding a string that has two left
derivations according to the grammar.

S — 5S
S — aSh
S — bSa
S—e€

Answer: aabb is a string with two left derivations:

S = aSh S= 55

S = aaShb = aSbS

S = aabb = aaSbbS
= aabbS
= aabdb

Discussion: The goal is to find two left derivations that lead to the same string, so
a strategy is to start off with applying different rules — thus the derivations will be
different — and then try to get both derivations to the same string.

Start each derivation with a different rule:

S = aSb S = bSa

But we can see that in the first one, whatever string is derived will start with a and
end with b, while the opposite is true in the second derivation. These derivations will
never result in the same string.

Try something else —

S = aSb S =85S

Since the first derivation will result in a string starting with a and ending with b,
we need to aim for that in the second derivation as well.

S — aSh S =55
= aSbhS

Now apply the same steps to each derivation.

CPSC 229, Spring 2024

S = aSh S=S5S

S = aaShdb = aSbS

S = aabb = aaSbbS
= aabbS

Finally, eliminate the final S on the right side.

S = aSh S=S5S

S = aaShb = aSbS

S = aabb = aaSbbS
= aabbS

—> aabb

CPSC 229, Spring 2024

Find a left derivation for (z + y) * z in the following grammar.

E—FE+ T
E—T
T—T x F
T — F
F— (E)
F—x
F—y
F—z

Answer:

Discussion: What is interesting here is not the derivation itself, but the process — the
first decision, for example, is between £ — E +T and — T'. Which to choose? Just
looking at the first symbol (x + y) * z isn’t enough.

