Write strings generated by the following grammar. Illustrate the different possibilities.

$$E ::= T [+ T] \dots$$
 $T ::= F [* F] \dots$
 $F ::= "(" E ")" | x | y | z$

Answer: x, (x + y * x), ((x * y) + x * z) — these show the different operators and how expressions can be nested.

Discussion: "Illustrate the different possibilities" means to cover the different rules to show the various options. Some examples:

$$E \Rightarrow T \quad E \Rightarrow T$$

$$\Rightarrow F \quad \Rightarrow F$$

$$\Rightarrow x \quad \Rightarrow "("E")" \quad \Rightarrow "("T+T")" \quad \Rightarrow "("T+T")"$$

$$\Rightarrow "("F+T")" \quad \Rightarrow "("F+T")" \quad \Rightarrow "("T+T")"$$

$$\Rightarrow "("x+F*F")" \quad \Rightarrow "(""("T")"+T")"$$

$$\Rightarrow "("x+y*F")" \quad \Rightarrow "(""("x*F")"+T")"$$

$$\Rightarrow "("x+y*F")" \quad \Rightarrow "(""("x*F")"+T")"$$

$$\Rightarrow "(""("x*y")"+T")"$$

$$\Rightarrow "(""("x*y")"+F*F")"$$

$$\Rightarrow "(""("x*y")"+x*F")"$$

$$\Rightarrow "(""("x*y")"+x*F")"$$

Write the following BNF grammar using the standard context-free grammar notation.

$$\begin{split} E &::= T \; [\; + \; T \;] \ldots \\ T &::= F \; [\; * \; F \;] \ldots \\ F &::= "(" \; E \; ")" \; | \; x \; | \; y \; | \; z \end{split}$$

Answer:

$$\begin{split} E &\longrightarrow TA \\ A &\longrightarrow +TA \\ A &\longrightarrow \epsilon \\ T &\longrightarrow FB \\ B &\longrightarrow +FB \\ B &\longrightarrow \epsilon \\ F &\longrightarrow "("E")" \\ F &\longrightarrow x \\ F &\longrightarrow y \\ F &\longrightarrow z \end{split}$$

Discussion: The rule $F := "("E")" \mid x \mid y \mid z$ expresses four alternatives for F:

$$F \longrightarrow "("E")"$$

$$F \longrightarrow x$$

$$F \longrightarrow y$$

$$F \longrightarrow z$$

For $E := T \ [+T] \dots$, there are two possibilities — $E \longrightarrow T$ and something which can produce repetitions of +T following a T. Repetitions takes the form $A \longrightarrow +TA$ — a new non-terminal is needed besides E because of the initial T in $T \ [+T] \dots$ $A \longrightarrow \epsilon$ ends the repetition. Finally, the "following a T part" comes from a rule $E \longrightarrow TA$.

$$\begin{split} E &\longrightarrow TA \\ A &\longrightarrow +TA \\ A &\longrightarrow \epsilon \end{split}$$

 $(E\longrightarrow T \text{ isn't needed because } E\Longrightarrow T \text{ can be derived from } E\longrightarrow TA \text{ and } A\longrightarrow \epsilon.)$

The same strategy can be used for the final BNF rule:

$$\begin{split} T &\longrightarrow FB \\ B &\longrightarrow +FB \\ B &\longrightarrow \epsilon \end{split}$$

Show that the following grammar is ambiguous by finding a string that has two left derivations according to the grammar.

$$S \longrightarrow SS$$

$$S \longrightarrow aSb$$

$$S \longrightarrow bSa$$

$$S \longrightarrow \epsilon$$

Answer: *aabb* is a string with two left derivations:

$$S \Longrightarrow aSb$$
 $S \Longrightarrow SS$ $S \Longrightarrow aaSbS$ $S \Longrightarrow aabbS$ $S \Longrightarrow aabbS$ $S \Longrightarrow aabbS$

Discussion: The goal is to find two left derivations that lead to the same string, so a strategy is to start off with applying different rules — thus the derivations will be different — and then try to get both derivations to the same string.

Start each derivation with a different rule:

$$S \Longrightarrow aSb$$
 $S \Longrightarrow bSa$

But we can see that in the first one, whatever string is derived will start with a and end with b, while the opposite is true in the second derivation. These derivations will never result in the same string.

Try something else —

$$S \Longrightarrow aSb$$
 $S \Longrightarrow SS$

Since the first derivation will result in a string starting with a and ending with b, we need to aim for that in the second derivation as well.

$$S \Longrightarrow aSb$$
 $S \Longrightarrow SS$ $\Longrightarrow aSbS$

Now apply the same steps to each derivation.

CPSC 229, Spring 2024

$$S \Longrightarrow aSb$$
 $S \Longrightarrow SS$ $S \Longrightarrow aSbS$ $S \Longrightarrow aabb$ $\Longrightarrow aaSbS$ $\Longrightarrow aabbS$

Finally, eliminate the final S on the right side.

$$S \Longrightarrow aSb$$
 $S \Longrightarrow SS$ $S \Longrightarrow aaSbS$ $S \Longrightarrow aabbS$ $\Longrightarrow aabbS$ $\Longrightarrow aabbS$

Find a left derivation for (x + y) * z in the following grammar.

$$E \longrightarrow E + T$$

$$E \longrightarrow T$$

$$T \longrightarrow T * F$$

$$T \longrightarrow F$$

$$F \longrightarrow (E)$$

$$F \longrightarrow x$$

$$F \longrightarrow y$$

$$F \longrightarrow z$$

Answer:

$$E \Longrightarrow T$$

$$\Longrightarrow T * F$$

$$\Longrightarrow F * F$$

$$\Longrightarrow (E) * F$$

$$\Longrightarrow (E + T) * F$$

$$\Longrightarrow (T + T) * F$$

$$\Longrightarrow (F + T) * F$$

$$\Longrightarrow (x + T) * F$$

$$\Longrightarrow (x + F) * F$$

$$\Longrightarrow (x + y) * F$$

$$\Longrightarrow (x + y) * z$$

Discussion: What is interesting here is not the derivation itself, but the process — the first decision, for example, is between $E \longrightarrow E + T$ and $\longrightarrow T$. Which to choose? Just looking at the first symbol (x + y) * z isn't enough.