Using the regex pattern notation discussed in class, write a regular expression that could be used to match each of the following.
(a) Any sequence of letters (upper- or lowercase) that includes the letter Z (in uppercase).
Answer: $[\mathrm{a}-\mathrm{zA}-\mathrm{Z}] * \mathrm{Z}[\mathrm{a}-\mathrm{zA}-\mathrm{Z}] *$
Discussion: The pattern [a-zA-Z] matches any letter in the ranges a-z or A-Z.
(b) Any eleven-digit telephone number written in the form (xxx) $\mathrm{xxx}-\mathrm{xxxx}$.

Answer: $\backslash([0-9][0-9][0-9] \backslash)[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]$ or $\backslash([0-9]\{3\} \backslash)[0-9]\{3\}-[0-9]\{4\}$
Discussion: Remember that (is a meta-character and must be escaped. The second form uses the $\{n\}$ notation to indicate a specific count.
(c) Any eleven-digit telephone number either in the form (xxx) $\mathrm{xxx}-\mathrm{xxxx}$ or $\mathrm{xxx}-\mathrm{xxx}-\mathrm{xxxx}$.

Answer: $\backslash([0-9]\{3\} \backslash)[0-9]\{3\}-[0-9]\{4\} \mid[0-9]\{3\}-[0-9]\{3\}-[0-9]\{4\}$ or $(\backslash([0-9]\{3\} \backslash) \mid[0-9]\{3\}-)[0-9]\{3\}-[0-9]\{4\}$

Discussion: The second form reflects the observation that the xxx-xxxx part of both formats is the same. Note the use of both () to group elements and $\backslash(\backslash)$ for literal parens.

Give a search pattern and a replace pattern that could be used to convert seven-digit telephone numbers in the format $\mathrm{xxx}-\mathrm{xxx}-\mathrm{xxxx}$ to the format (xxx) $\mathrm{xxx}-\mathrm{xxxx}$.

Answer: The search pattern is $([0-9]\{3\})-([0-9]\{3\}-[0-9]\{4\})$ and the replace pattern is $\$ 1-\$ 2$

Discussion: The entire string matching the search pattern is replaced by the replace pattern. Use () to denote groups of matched elements that should appear in the result, and use $\$ 1, \$ 2$, etc to refer to those matched groups.

Write a pattern that matches all strings in the language $L=\left\{a^{n} b a^{n} \mid n \geq 0\right\}$.
Answer: $(\mathrm{a} *) \mathrm{b} \backslash 1$
Discussion: ($\mathrm{a} *) \mathrm{b}(\mathrm{a} *)$ matches all strings containing exactly one b, but it doesn't require that the number of a s before and after the b be the same. The backreference $\backslash 1$, which refers to what was matched by the first set of parens, makes it possible to specify that the substring following the b must be the same as whatever substring preceeded the b.

