Show that the language $\left\{a^{n} b^{m} \mid n \neq m\right\}$ is deterministic context-free.
Answer:
Definition 4.5 says that L is deterministic context-free if there is a deterministic pushdown automaton accepting $L \$$. The following is such an automaton.

Discussion: A way to start is with a pushdown automaton that accepts something similar to L, then modify it to accept $L \$$ and finally make it deterministic.

We've seen a pushdown automaton for $\left\{a^{n} b^{m} \mid n=m\right\}$, so let's start with that.

Now modify it for $n \neq m$. There are two possibilities - if there are more as than $b s$, the machine will end up in state q_{1} with an empty string but a non-empty stack, and if there are more $b \mathrm{~s}$ than $a \mathrm{~s}$, the machine will end up in state q_{1} with an empty stack but with at least one b left in the string.

This is non-deterministic because of the ϵ-transitions leaving q_{0} and q_{1}.
Let's start with q_{0}. The ϵ-transition is meant to apply when all of the a s have been consumed. There are three possibilities for the string: one or more as are followed by one or more $b s$, one or more a s are followed by the end of the string (no $b s$), and zero as are followed by one or more $b \mathrm{~s}$. (Zero as followed by zero $b s$ isn't in the language because it has an equal number of a s and $b \mathrm{~s}$.) The first case is addressed by a transition $\xrightarrow{b, 1 / \epsilon}$ and the second case is addressed by a transition $\xrightarrow{\$, 1 / \epsilon}$, but the third case requires a transition $\xrightarrow{b, \epsilon / \epsilon}$ because the stack is empty — but that's still non-deterministic because it could be applied instead of $\xrightarrow{\text { b,1/є }}$. Fixing this needs a trick similar to the role of the $\$$ to mark the end of the string - push something onto the stack right off the bat so the bottom of the stack can be recognized.

Now consider the ϵ-transitions leaving q_{1}. Start with $q_{1} \rightarrow q_{2} . q_{1}$ handles reading $b \mathrm{~s}$ while there aren't yet as many $b s$ as a (i.e. the stack isn't empty). The transition to q_{2} is intended for when there are more b s than $a s$ - the stack is empty so the remaining b s need to be consumed. Change the transition to consume a b (there's at least one or else there would be the same number of $a s$ and $b s$) and pop the bottom-of-stack symbol.

Then consider the ϵ-transition $q_{1} \rightarrow q_{3} . q_{3}$ is used to empty the stack when the end of the string has been reached (more as than $b s$). Thus this transition applies at the end of the string and should pop a 1 (there is at least one or else the number of a s and b s are equal).

This is now deterministic, but it's not quite complete - the end-of-string $\$$ needs to be consumed and the bottom-of-stack 0 needs to be popped in all cases. A new final state is added to ensure that the $\$$ is really the last thing read.

