Give English-language description of the languages generated by the following regular expressions.

Discussion: Break the expression down into pieces, describe the language of each piece, and then build up from there. Methodically writing out strings that match the pattern can also be a useful tactic.
(a) $(a \mid b)^{*}$ - any number of $a s$ and $b s$

Discussion: $(a \mid b)$ is a single a or b, so $(a \mid b)^{*}$ means zero or more occurrences of a single a or b.
(b) $a^{*} \mid b^{*}$ - either all $a s$ or all $b s$

Discussion: a^{*} is any number of a s (including 0) and b^{*} is any number of b s (including 0).
(c) $b^{*}\left(a b^{*} a b^{*}\right)^{*}$ - even number of $a \mathrm{~s}$.

Discussion: $a b^{*} a b^{*}$ is an a followed by any number of b (including 0), twice - which means a string starting with a and containing exactly two a s total. $\left(a b^{*} a b^{*}\right)^{*}$ repeats that, for strings starting with a and containing an even number of $a \mathrm{~S}($ and $\epsilon) . b^{*}$ then removes the "starting with a " requirement without changing the total number of a s.
(d) $b^{*} a b b^{*}-a b$ with any number of b s before and after.

Give regular expressions over $\Sigma=\{a, b\}$ that generate the following languages.
(a) $\{x \in \Sigma \mid x$ contains 3 consecutive a 's $\}-(a \mid b)^{*} a a a(a \mid b)^{*}$

Discussion: $a a a$ is required, so start with a pattern for that (aaa). Then, what can come before or after? Since it wasn't stated that there needed to be exactly 3 consecutive as, it can be any combination of symbols (including none).
(b) $\left\{x \in \Sigma||x|\right.$ is even $\}-((a \mid b)(a \mid b))^{*}$

Discussion: An even number can be written as $2 k$ for some integer k, so this provides the idea - a regular expression that matches exactly two characters, repeated 0 or more times.
(c) $\left\{x \in \Sigma \mid n_{b}(x)=2 \bmod 3\right\}-\left(a^{*} b a^{*} b a^{*} b\right)^{*} a^{*} b a^{*} b a^{*}$

Discussion: This notation means that $n_{b}(x)=3 k+2$ for some integer k - that the remainder is 2 when $n_{b}(x)$ is divided by 3 . Proceed similarly to the previous problem - start with a unit that has exactly $3 b s\left(a^{*} b a^{*} b a^{*} b a^{*}\right)$, repeat that as many times as desired, and add one copy of a unit with exactly 2 bs ($\left.a^{*} b a^{*} b a^{*}\right)$. It can then be observed that the last a^{*} in $a^{*} b a^{*} b a^{*} b a^{*}$ can be dropped - why?
(d) $\{x \in \Sigma \mid x$ contains $a a b a\}-(a \mid b)^{*} a a b a(a \mid b)^{*}$

Discussion: Start with what is required ($a a b a$, then add what can come before and after.
(e) $\left\{x \in \Sigma \mid n_{b}(x)<2\right\}-a^{*} \mid a^{*} b a^{*}$

Discussion: Less than $2 b$ s means there are either no b s or exactly $1 b$.
(f) $\{x \in \Sigma \mid x$ doesn't end in $a a\}-(a \mid b)^{*} b \mid(a \mid b)^{*} b a$ or $(a \mid b)^{*}(b \mid b a)$

Discussion: Not ending in $a a$ means ending in either b or $b a$.

