
CPSC 229, Spring 2024

Complete the proof of Theorem 3.3 by showing how to modify a machine that accepts
L(r) into a machine that accepts L(r∗).

Answer: Let M be the machine that accepts L(r). To accept L(r∗), M ′ should have a
new start state q′0 and an ε-transition from q′0 to M ’s start state q0. In addition, add
ε-transitions from each of M ’s final states back to q0. Finally, designate q′0 a final state.
(M ’s final states should remain final states too.)

Discussion: Observe that L(r∗) = L(ε|r|rr|rrr| . . .).
Let M be an NFA accepting L(r) and let M∗ be an NFA accepting L(r∗).
For a fixed number of copies of r, such as L(rrr), we can use the construction for

concatenation: connect that many copies of M in sequence, with the final state(s) of
each copy connected to the start start of the next with ε-transitions, the start state of
the whole machine being the start state of the first copy, and the final state(s) for the
whole machine being the final state(s) of the last copy.

Using this idea, we can construct a machine M ′ accepting L(r|rr|rrr| . . .) with
just a single copy of M , connecting the final state(s) of M to its start state with an
ε-transition and leaving the start state and final state(s) as they are.

The only thing missing from L(r∗) is the empty string. An NFA Mε accepting
{ε} consists of a single state which is both the start state and a final state. We then
use the construction for | to combine Mε and M ′: create a new start state which is
connected to the start states of Mε and M ′ with ε-transitions. The NFA described in
the answer above is a slightly simplified version of this — since nothing connects back
to this new start state, it is only reachable when ε has been consumed, so making it
final and getting rid of Mε doesn’t break anything.

CPSC 229, Spring 2024

Using the construction described in Theorem 3.3, build an NFA that accepts L((ab|a)∗(bb)).

Answer:

Discussion: Break (ab|a)∗(bb) down into its smallest pieces (individual symbols), build
the NFAs for those elements, then combine those NFAs using the construction appro-
priate to each operator. So, to start, NFAs accepting L(a) and L(b):

Next, NFAs for L(ab) and L(bb), using the construction for concatenation:

Now, for L(ab|a), using the construction for |:

Now, for L((ab|a)∗), using the construction for ∗:

CPSC 229, Spring 2024

And finally, the NFA for L((ab|a)∗(bb)), using the construction for concatenation:

This is certainly not the simplest possible NFA for L((ab|a)∗(bb)), but the task here
was to build an NFA and to utilize the construction from Theorem 3.3.

CPSC 229, Spring 2024

Show that for any DFA or NFA, there is an NFA with exactly one final state that
accepts the same language.

Answer: Let M be the original DFA or NFA. Construct M ′ with the same states and
transitions as M with the following modifications:

� Add a new final state qf and ε-transitions from M ’s final states to qf .

� The only final state in M ′ is qf . (M ’s final states are not final in M ′.)

Any string that reached a final state in M will be able to reach qf along the ε-
transition so M ′ accepts all of those strings, and qf is only reachable from one of M ’s
final states so no other strings will be accepted by M ′.

CPSC 229, Spring 2024

Using the strategy outlined in class, find a regular expression that generates the lan-
guage accepted by the NFA below.

Answer: b∗a(ba∗b|ab∗a)∗

Discussion:
We want to replace sequences of transitions with single transitions. Cycles allow a

particular sequence of transitions to be repeated any number of times (the ∗ operation
in regular expressions). Start with the single-transition cycles i.e. transitions that start
and end at the same state:

Next, look for two-transition cycles — transitions from state qi to qj and then from
qj back to qi. There are two of these, one involving q0 and q1 and one involving q1 and
q2. Focus on cases where the middle state has only a single transition in and out (other
than self loops) — a property that applies to q0 and q2 — so the cycles considered will
be q1 → q0 → q1 and q1 → q2 → q1. Start with q1 → q0 → q1, collapsing the cycle into
a single transition labeled with the concatentation of the regular expressions along the
cycle:

Note that q0 and the transition q0 → q1 are not removed because q0 is the start
state. (Similarly, if the middle state was a final state, you would not be able to remove
it or its in-transition.) Also note that the q1 → q1 transition would more properly be
labelled (ab∗a)∗ to reflect the fact that loops can be travelled as many times as desired.

Now, q1 → q2 → q1:

CPSC 229, Spring 2024

q2 can be removed in this case because it is neither the start state or a final state,
and there are no other ways to get to q2 or leave it than from q1. Again, the new
q1 → q1 transition would more properly be labelled (ba∗b)∗ to reflect the fact that
loops can be travelled as many times as desired.

Now only the start and final states remain: the regular expression is

b∗a(ba∗b|ab∗a)∗

(Remember to account for the ability to go around loops as many times as desired.)

CPSC 229, Spring 2024

Using the strategy outlined in class, find a regular expression that generates the lan-
guage accepted by the NFA below.

Answer: (a|b)∗(aa(a|b)∗|bb(a|b)∗)

Discussion: This NFA has two final states, so start by constructing an equivalent NFA
with only one final state:

Now, we want to replace sequences of transitions with single transitions. Cycles
allow a particular sequence of transitions to be repeated any number of times (the ∗
operation in regular expressions). Start with the single-transition cycles i.e. transitions
that start and end at the same state:

Next, look for two-transition cycles — transitions from state qi to qj and then from
qj back to qi. There aren’t any of those here, so move on to simple paths. Look first
for a sequence of two transitions where the state in the middle is not the start state or
a final state and has only a single transition in and a single transition out (other than
self-loops).

CPSC 229, Spring 2024

Now only the start and final states remain: the regular expression is

(a|b)∗(aa(a|b)∗|bb(a|b)∗)

This could be simplified to (a|b)∗(aa|bb)(a|b)∗) but the goal here is to use the strategy
identified rather than attempt more ad hoc methods.

CPSC 229, Spring 2024

Using the strategy outlined in class, find a regular expression that generates the lan-
guage accepted by the NFA below.

Answer: a∗(((a|ba∗)b∗a∗b|ba∗a)b∗|(a|ba∗)b∗a∗)

Discussion: This NFA has two final states, so start by constructing an equivalent NFA
with only one final state:

Now, we want to replace sequences of transitions with single transitions. Cycles
allow a particular sequence of transitions to be repeated any number of times (the ∗
operation in regular expressions). Start with the single-transition cycles i.e. transitions
that start and end at the same state:

Next, look for two-transition cycles — transitions from state qi to qj and then from
qj back to qi. There aren’t any of those here, so move on to simple paths. Look first
for a sequence of two transitions where the state in the middle is not the start state or
a final state and has only a single transition in and a single transition out (other than
self-loops). There aren’t any of those either, so look for cases where the state in the
middle has only a single transition in or a single transition out (other than self-loops).
This is actually the case for every state other than the start and final states, so we’ll
start with q2 as it has a single in-transition. Since there are two ways to leave q2 we’ll

CPSC 229, Spring 2024

handle both q0 → q2 → q1 and q0 → q2 → q4 at the same time, because then all the
routes through q2 are covered and q2 can be removed.

Two parallel transitions can be combined with |:

q0 → q1 → q3 is now a simple path with only one transition in and out of q1, so
replace that next.

q3 has a single in-transition, so handle that next. Also combine the two parallel
transitions between q0 and q4.

Finally, q4 has a single transition in and out.

Now only the start and final states remain: the regular expression is

a∗(((a|ba∗)b∗a∗b|ba∗a)b∗|(a|ba∗)b∗a∗)

This again is not necessarily the simplest regular expression possible, but the goal is
to use the strategy identified rather than attempt more ad hoc methods.

