Complete the proof of Theorem 3.3 by showing how to modify a machine that accepts $L(r)$ into a machine that accepts $L\left(r^{*}\right)$.

Answer: Let M be the machine that accepts $L(r)$. To accept $L\left(r^{*}\right), M^{\prime}$ should have a new start state q_{0}^{\prime} and an ϵ-transition from q_{0}^{\prime} to M 's start state q_{0}. In addition, add ϵ-transitions from each of M 's final states back to q_{0}. Finally, designate q_{0}^{\prime} a final state. (M 's final states should remain final states too.)

Discussion: Observe that $L\left(r^{*}\right)=L(\epsilon|r| r r|r r r| \ldots)$.
Let M be an NFA accepting $L(r)$ and let M_{*} be an NFA accepting $L\left(r^{*}\right)$.
For a fixed number of copies of r, such as $L(r r r)$, we can use the construction for concatenation: connect that many copies of M in sequence, with the final state(s) of each copy connected to the start start of the next with ϵ-transitions, the start state of the whole machine being the start state of the first copy, and the final state(s) for the whole machine being the final state(s) of the last copy.

Using this idea, we can construct a machine M^{\prime} accepting $L(r|r r| r r r \mid \ldots)$ with just a single copy of M, connecting the final state(s) of M to its start state with an ϵ-transition and leaving the start state and final state(s) as they are.

The only thing missing from $L\left(r^{*}\right)$ is the empty string. An NFA M_{ϵ} accepting $\{\epsilon\}$ consists of a single state which is both the start state and a final state. We then use the construction for \mid to combine M_{ϵ} and M^{\prime} : create a new start state which is connected to the start states of M_{ϵ} and M^{\prime} with ϵ-transitions. The NFA described in the answer above is a slightly simplified version of this - since nothing connects back to this new start state, it is only reachable when ϵ has been consumed, so making it final and getting rid of M_{ϵ} doesn't break anything.

Using the construction described in Theorem 3.3, build an NFA that accepts $L\left((a b \mid a)^{*}(b b)\right)$.
Answer:

Discussion: Break $(a b \mid a)^{*}(b b)$ down into its smallest pieces (individual symbols), build the NFAs for those elements, then combine those NFAs using the construction appropriate to each operator. So, to start, NFAs accepting $L(a)$ and $L(b)$:

Next, NFAs for $L(a b)$ and $L(b b)$, using the construction for concatenation:

Now, for $L(a b \mid a)$, using the construction for \mid :

Now, for $L\left((a b \mid a)^{*}\right)$, using the construction for $*$:

And finally, the NFA for $L\left((a b \mid a)^{*}(b b)\right)$, using the construction for concatenation:

This is certainly not the simplest possible NFA for $L\left((a b \mid a)^{*}(b b)\right)$, but the task here was to build an NFA and to utilize the construction from Theorem 3.3.

Show that for any DFA or NFA, there is an NFA with exactly one final state that accepts the same language.

Answer: Let M be the original DFA or NFA. Construct M^{\prime} with the same states and transitions as M with the following modifications:

- Add a new final state q_{f} and ϵ-transitions from M 's final states to q_{f}.
- The only final state in M^{\prime} is q_{f}. (M 's final states are not final in M^{\prime}.)

Any string that reached a final state in M will be able to reach q_{f} along the ϵ transition so M^{\prime} accepts all of those strings, and q_{f} is only reachable from one of M 's final states so no other strings will be accepted by M^{\prime}.

Using the strategy outlined in class, find a regular expression that generates the language accepted by the NFA below.

Answer: $b^{*} a\left(b a^{*} b \mid a b^{*} a\right)^{*}$
Discussion:
We want to replace sequences of transitions with single transitions. Cycles allow a particular sequence of transitions to be repeated any number of times (the $*$ operation in regular expressions). Start with the single-transition cycles i.e. transitions that start and end at the same state:

Next, look for two-transition cycles - transitions from state q_{i} to q_{j} and then from q_{j} back to q_{i}. There are two of these, one involving q_{0} and q_{1} and one involving q_{1} and q_{2}. Focus on cases where the middle state has only a single transition in and out (other than self loops) - a property that applies to q_{0} and q_{2} - so the cycles considered will be $q_{1} \rightarrow q_{0} \rightarrow q_{1}$ and $q_{1} \rightarrow q_{2} \rightarrow q_{1}$. Start with $q_{1} \rightarrow q_{0} \rightarrow q_{1}$, collapsing the cycle into a single transition labeled with the concatentation of the regular expressions along the cycle:

Note that q_{0} and the transition $q_{0} \rightarrow q_{1}$ are not removed because q_{0} is the start state. (Similarly, if the middle state was a final state, you would not be able to remove it or its in-transition.) Also note that the $q_{1} \rightarrow q_{1}$ transition would more properly be labelled $\left(a b^{*} a\right)^{*}$ to reflect the fact that loops can be travelled as many times as desired.

Now, $q_{1} \rightarrow q_{2} \rightarrow q_{1}$:

q_{2} can be removed in this case because it is neither the start state or a final state, and there are no other ways to get to q_{2} or leave it than from q_{1}. Again, the new $q_{1} \rightarrow q_{1}$ transition would more properly be labelled $\left(b a^{*} b\right)^{*}$ to reflect the fact that loops can be travelled as many times as desired.

Now only the start and final states remain: the regular expression is

$$
b^{*} a\left(b a^{*} b \mid a b^{*} a\right)^{*}
$$

(Remember to account for the ability to go around loops as many times as desired.)

Using the strategy outlined in class, find a regular expression that generates the language accepted by the NFA below.

Answer: $(a \mid b)^{*}\left(a a(a \mid b)^{*} \mid b b(a \mid b)^{*}\right)$
Discussion: This NFA has two final states, so start by constructing an equivalent NFA with only one final state:

Now, we want to replace sequences of transitions with single transitions. Cycles allow a particular sequence of transitions to be repeated any number of times (the * operation in regular expressions). Start with the single-transition cycles i.e. transitions that start and end at the same state:

Next, look for two-transition cycles - transitions from state q_{i} to q_{j} and then from q_{j} back to q_{i}. There aren't any of those here, so move on to simple paths. Look first for a sequence of two transitions where the state in the middle is not the start state or a final state and has only a single transition in and a single transition out (other than self-loops).

CPSC 229, Spring 2024

Now only the start and final states remain: the regular expression is

$$
(a \mid b)^{*}\left(a a(a \mid b)^{*} \mid b b(a \mid b)^{*}\right)
$$

This could be simplified to $\left.(a \mid b)^{*}(a a \mid b b)(a \mid b)^{*}\right)$ but the goal here is to use the strategy identified rather than attempt more ad hoc methods.

Using the strategy outlined in class, find a regular expression that generates the language accepted by the NFA below.

Answer: $a^{*}\left(\left(\left(a \mid b a^{*}\right) b^{*} a^{*} b \mid b a^{*} a\right) b^{*} \mid\left(a \mid b a^{*}\right) b^{*} a^{*}\right)$
Discussion: This NFA has two final states, so start by constructing an equivalent NFA with only one final state:

Now, we want to replace sequences of transitions with single transitions. Cycles allow a particular sequence of transitions to be repeated any number of times (the * operation in regular expressions). Start with the single-transition cycles i.e. transitions that start and end at the same state:

Next, look for two-transition cycles - transitions from state q_{i} to q_{j} and then from q_{j} back to q_{i}. There aren't any of those here, so move on to simple paths. Look first for a sequence of two transitions where the state in the middle is not the start state or a final state and has only a single transition in and a single transition out (other than self-loops). There aren't any of those either, so look for cases where the state in the middle has only a single transition in or a single transition out (other than self-loops). This is actually the case for every state other than the start and final states, so we'll start with q_{2} as it has a single in-transition. Since there are two ways to leave q_{2} we'll
handle both $q_{0} \rightarrow q_{2} \rightarrow q_{1}$ and $q_{0} \rightarrow q_{2} \rightarrow q_{4}$ at the same time, because then all the routes through q_{2} are covered and q_{2} can be removed.

Two parallel transitions can be combined with |:

$q_{0} \rightarrow q_{1} \rightarrow q_{3}$ is now a simple path with only one transition in and out of q_{1}, so replace that next.

q_{3} has a single in-transition, so handle that next. Also combine the two parallel transitions between q_{0} and q_{4}.

Finally, q_{4} has a single transition in and out.

Now only the start and final states remain: the regular expression is

$$
a^{*}\left(\left(\left(a \mid b a^{*}\right) b^{*} a^{*} b \mid b a^{*} a\right) b^{*} \mid\left(a \mid b a^{*}\right) b^{*} a^{*}\right)
$$

This again is not necessarily the simplest regular expression possible, but the goal is to use the strategy identified rather than attempt more ad hoc methods.

