
CPSC 229, Spring 2024

Give a regular expression for the language accepted by this NFA using the construction
from class.

Answer: a(ba)∗|a(bb)∗(ba(ba∗)|ε)

Discussion: The construction from class involves replacing two-transition sequences
with single transitions labeled with regular expressions, working to eliminate all of the
states other than the start and final states.

This construction requires a single final state, so first transform the NFA so that
there’s only one final state:

First, change the labels for qi −→ qi transitions to include ∗ in order to reflect the
loop. But there aren’t any of those at the moment.

Next, look for transitions of the form qi −→ qj −→ qi (a cycle) where qj has a

single transition in and a single transition out. q1
b−→ q2

a−→ q1 is such a situation.

Eliminate q2 and replace the sequence of transitions with q1
ba−→ q1. Since it is a loop,

add the ∗.

There aren’t any more states with only one transition in and out, so consider the
next step up: those with three transitions, either two in and one out or vice versa.
q1 qualifies. There are two pairs of transitions involving q1: q0

a−→ q1
ε−→ q5 and

q4
a−→ q1

ε−→ q5.

CPSC 229, Spring 2024

q4 is another 3-transition state, with two pairs of transitions involving it: q3
b−→

q4
a(ba)∗−→ q5 and q3

b−→ q4
b−→ q3.

Two transitions between the same states can be combined with |.

Now q3 has a single transition in and out.

Now we can easily read the regular expression, so it’s not really necessary to combine
the last two transitions.

CPSC 229, Spring 2024

Apply the NFA-to-DFA conversion algorithm to construct a DFA that accepts the same
language.

Answer:

Discussion: You can imagine your finger pointing to the current state as you trace
through a DFA for a particular string, and if your finger ends up on a final state when
the string is complete, it is accepted. In an NFA you many need many fingers at
once, as there can be more than one transition applicable at one time. The algorithm
for converting a NFA to a DFA converts multiple fingers to one — the DFA states
correspond to the sets of NFA states where there can be fingers pointed after a string
has been read.

The start state for the DFA is the set of the start state for the NFA and anything
reachable from the NFA’s start state via ε-transitions.

Choose one of the DFA states where the out transitions haven’t been considered
yet, and add them: for each NFA state in the DFA state, consider where a transition
involving symbol σ ends up. Remember that if there isn’t a transition involving σ,
that string isn’t accepted — it’s a dead end.

q0
a−→ q1 and q0

a−→ q2, but there aren’t any transitions from q0 involving b. Don’t
forget to also include any states reachable from q1 and q2 with ε-transitions.

CPSC 229, Spring 2024

There aren’t any transitions leaving q1 or q3 for a. For b, q1
b−→ q2 and q3

b−→ q4.
Also include any states reachable from q2 and q4 with ε-transitions.

For a, q2
a−→ q1 and q4

a−→ q1. For b, q4
b−→ q3. Don’t forget to also include any

states reachable from q1 and q3 with ε-transitions.

From q1, only q1
b−→ q2 applies. Don’t forget to also include any states reachable

from q2 with ε-transitions.

From q2, only q2
a−→ q1 applies. Don’t forget to also include any states reachable

from q1 with ε-transitions.

From q3, only q3
b−→ q4 applies. Don’t forget to also include any states reachable

from q4 with ε-transitions.

CPSC 229, Spring 2024

From q4, q4
a−→ q1 and q4

b−→ q3 Don’t forget to also include any states reachable
from q1 or q3 with ε-transitions.

The last step is to indicate the final states. Any NFA only requires a finger to end
up in a final state, not all of them, so any state of the DFA that includes one of the
NFA final states should be final.

CPSC 229, Spring 2024

Draw an NFA that accepts L((a|b)∗cc∗(a|b)∗) using the construction from Theorem 3.3.

Answer:

Discussion: The proof of Theorem 3.3 gives NFAs for each of the basic regular expres-
sions, including ε and a single symbol σ, plus how to construct NFAs from r1|r2, r1r2,
and r∗ from NFAs for r1, r2, and r. (∗ isn’t in the book but was discussed in class and
can be found in the examples from class.)

Start with NFAs for a and b:

a|b involves a new start state with ε-transitions:

(a|b)∗ involves a new start (and final) state with an ε-transition, plus ε-transitions
linking final states back to the beginning:

CPSC 229, Spring 2024

Next, c:

For (a|b)∗c, connect the final states from (a|b)∗ to the start state of c:

Next, c∗:

(a|b)∗cc∗:

CPSC 229, Spring 2024

And finally, (a|b)∗cc∗(a|b)∗:

CPSC 229, Spring 2024

Give a context-free grammar for the language L = { anbm | n > 2m ∈ N }.

Answer:

S −→ aaSb

S −→ A

A −→ aA

A −→ a

Discussion: When there are constraints on the number of different symbols, they need
to be generated in pairs. Here, in addition to the pattern of as followed by bs, there
need to be at least twice as many as as bs. Start with generating exactly twice as many
as:

S −→ aaSb

S −→ ε

Each time S −→ aaSb is used, we get two more as at the beginning and one more b
at the end. S −→ ε allows the process to end — otherwise there is no way to eliminate
all of the non-terminals.

Exactly twice as many as as bs isn’t legal, we need at least one more. Forcing the
last S to be replaced by an a instead of ε ensures that:

S −→ aaSb

S −→ a

But this produces a2m+1bm and we need any number of as < 2m. A rule of the
form A −→ aA produces any number of a, but do that means S −→ aS or do we need
to introduce a new non-terminal? Since it doesn’t matter which order we generate as-
matched-with-bs vs just as, S −→ aS would work. But that’s definitely an ambiguous
grammar, and unambiguous grammars are nice. So it is preferable to fix the order for
the as (matched as first):

S −→ aaSb

S −→ A

A −→ aA

A −→ a

S −→ A allows the switch from matched as to additional as.
Now we can generate any number of as > 2m. The last step is to check base cases

— is ε permitted in the language? What about the case of m = 0? m = 0 is possible,
but since n > 2m, there must then be at least one a. The grammar does not allow ε
because the shortest derivation is S =⇒ A =⇒ a, and it does allow a. So it seems like
problem solved.

CPSC 229, Spring 2024

Write a BNF grammar for the following.

<html>

<head><title>the title</title></head>

<body>

<p>paragraph text</p>

 list item

 <p>another list item</p>

 <p>list item</p>

<p>second paragraph</p>

 nested item

</body>

</html>

Answer:

〈html〉 ::= “<html>” 〈head〉 〈body〉 “</html>”

〈head〉 ::= “<head>” 〈title〉 “</head>”

〈title〉 ::= “<title>” text “</title>”

〈body〉 ::= “<body>” [〈p〉 | 〈ul〉] . . . “</body>”

〈p〉 ::= “<p>” text “</p>”

〈ul〉 ::= “” [〈li〉] . . . “”

〈li〉 ::= “” (text | [〈p〉 | 〈ul〉] . . .)

Discussion: A convenient structure is a rule for each tag. Start with some of the simpler
ones. Let text be plain text without any more tags (defining that is beyond the intent
of this question).

〈html〉 ::= “<html>” 〈head〉 〈body〉 “</html>”

〈head〉 ::= “<head>” 〈title〉 “</head>”

〈title〉 ::= “<title>” text “</title>”

〈p〉 ::= “<p>” text “</p>”

The body can contain any number of p and ul tags in any order.

〈body〉 ::= “<body>” [〈p〉 | 〈ul〉] . . . “</body>”

A list can only have list items.

CPSC 229, Spring 2024

〈ul〉 ::= “” [〈li〉] . . . “”

List items can be just text or a combination of paragraphs and lists.

〈li〉 ::= “” (text | [〈p〉 | 〈ul〉] . . .)

