Motivation

« the running time of a loop is the sum of the time taken by
each iteration

if the time is the same for each iteration, the total time reduces to
the number of repetitions times the time per iteration

* the running time of a recursive function is expressed with
a recurrence relation

* logs and exponents come into play when something is
repeatedly divided or multiplied

CPSC 327: Data Structures and Algorithms + Spring 2024 28

Big-Oh for Sums

Use the big-Oh for sums table to find the © approximation
forthesum Y 1 | i log i.

2. [W] Give the © approximation for each of the following sums. Use the big-Oh for sums
table.

a. ¥i=1.n (Iog.i)
b. Zi=1.n (1/2))

C. Zi=1.logn (N i2)
d. Zi=1.n Zj=1..2 (ij log i)

CPSC 327: Data Structures and Algorithms + Spring 2024 30

The following table outlines the few easy rules with which you will be able to compute
(31, f) for functions with the basic form f(r) = @(5*" - n* - log’ n). (We consider
more general functions at the end of this section.)

b | d e Type of Sum Y b1 f() | Examples
>1|Any |Any || Geometric Increase | ®(f(n)) T2% 1.7
(dominated by Y. Y)
last term) T, —oen
=1|> —1]Any || Arithmetic-like an. fin) | Lo, ¥ = Gn-nd) = anT)
(ha.lfof_terr:msl PN =6Mn- 1) =on)
approximately s B ol i
sessly ha =0(n-n) =0(n)
Tl =8rm-1)=8Mm
Law =0 gy =0
=—1|=0 || Harmonic O(n n) ri % =log,(n} + ©(1)
< —1| Any || Bounded tail a(l) Yhamer =©0
(dominated by - _
first term) PRAY 4 =20
<1[Any [Any YLG)Y =6l
Tipb' =em

CPSC 327: Data Structures and Algorithms « Spring 2024 from Jeff Edmonds, How to Think About Algorithms 29

Big-Oh From Algorithms sort(arr)

for i « 0..n-2

if arr[i] == arr[i+l]
An array contains each of the numbers 1..n plus one duplic dup « arr [l]
value. Which value is duplicated? b
reak
* Algorithm A uses quicksort or mergsort to sort all of the
numbers, then makes one pass through the array looking
for adjacent slots with the same value.
= Algorithm B makes one pass through the array to sum the sum « 0
numbers, then uses the formula m‘nT_l‘l to calculate the fO r l « 0 . s = 1

sum += arr[i]
dup < sum-n(n-1)/2

sum of the numbers 1..n and subtracts that from the sum

of the array's value.

Algorithm C (not mentioned in class) makes one pass

through the array and for each value, makes a pass

through the rest of the array to see if another copy of that

value is found i.e. each value in the array is compared to

each other value to find the duplicate. fO r l - 0 ..n-1

for j « i+l..n-1

if arr[i] == arr[j]
dup « arr[jl
= break

CPSC 327: Data Structures and Algorithms + Spring 2024

Exponent Rules

Assume that a and b are nonzero real
numbers, and m and n are any integers.

1) Zero Property of Exponent

B’ =1
2) Negative Property of Exponent
1 1
b =E OR =t =b"

3) Product Property of Exponent
(bm)(bn)= P b2=b
4) Quotient Property of Exponent
jad
_ gm-n
—=0
5) Power of a Power Property of Exponent
(b")" b
6) Power of a Product Property of Exponent
m mym
(ab) =a"b

7) Power of a Quotient Property of Exponent

al' _a"
b b

Log Rules

definition of log:
if x = logy(n) then n = bx

Rule 1 log, (M-N) =log, M+log, N
M

Rule2: log,, [7) =log, M—log, N
N

Rule3: log, (Mk) =k-log, M
Rule4: log, (‘I) =0

Rules: log, (b) =1

RuleG: log, (bk) =k

rie: b2 () _y

Where: b>1,and M, Nandk can be any real numbers

but M and N must be positive!

log,(x) log,(n)_ _clog,(d)
— el pelog:
log,(b)

log, (x)

Solving Recurrence Relations

T(n) = a T(n-b) + f(n) where f(n) = ©(n° log® n)

Cases are based on the number of subproblems and f(n).

a f(n)

>1 any

behavior

base case dominates
(too many leaves)

solution

T(n) = ©(a™)

1 =1 all levels are important T(n) = ©(n f(n))

CPSC 327: Data Structures and Algorithms + Spring 2024

Logarithms and Exponents

For the following pairs of functions, indicate whether f=0(g),
f=L2(g). or F=0(g).

- j
- f‘
1

(n) = logn?, g(n) = 2967 [hajrA]
(n) = log;y n. g(n) = 10n [pairB]
(n) = log,y n. g (n) = log, 2n [pairC]

* tips

know the growth rate ordering of common functions: 1, log n, n,
nlog n, n? 2" n!
simplify other functions to make them more familiar

CPSC 327: Data Structures and Algorithms + Spring 2024 33

Solving Recurrence Relations

T(n) = a T(n/b) + f(n) where f(n) = ©(n° log® n)

Cases are based on the relationship between the number of
subproblems, the problem size, and f(n).

(log
a)/(log d behavior solution
b) vs c
top level dominates - more work
< any splitting/combining than in subproblems T(n) = ©(f(n))
(root too expensive)
all levels are important - log n steps to
= > -1 get to base case, and roughly same T(n) = ©(f(n) log n)
amount of work in each level
= < -1 base cases dominate - so many
subproblems that taking care of all the — (log a)/(log b)
> any base cases is more work than Ul =l) =

splitting/combining (too many leaves)

Big-Oh for Recurrence Relations

Use the big-Oh for recurrence relations tables to find the ©
approximation for the recurrence relation

T (n) = 3T [%) +© (n).

- T(n) = 2T(n/2) + O(log n)
- T(n) = 3T(n/9) + O(n)

- T(n) = 8T(n/2) + O(n?)

- T(n) = T(n-1) + ©(1)

CPSC 327: Data Structures and Algorithms + Spring 2024

36

