Motivation

- the running time of a loop is the sum of the time taken by each iteration
if the time is the same for each iteration, the total time reduces to the number of repetitions times the time per iteration
- the running time of a recursive function is expressed with a recurrence relation
- logs and exponents come into play when something is repeatedly divided or multiplied

[^0]
Big-Oh for Sums

Use the big-Oh for sums table to find the Θ approximation for the $\operatorname{sum} \sum_{i=1}^{n} i \log i$.

```
2. [W] Give the \(\Theta\) approximation for each of the following sums. Use the big-Oh for sums
    table.
        a. \(\Sigma_{i=1 . . n}(\log \mathrm{i})\)
    b. \(\Sigma_{i=1 . . n}\left(1 / 2^{1}\right)\)
    c. \(\Sigma_{i=1 . . \log n\left(n i^{2}\right)}\)
    d. \(\sum_{i=1 . . n} \sum_{i=1 . .1^{2}}(\mathrm{ij} \log \mathrm{i})\)
```

The following table outlines the few easy rules with which you will be able to compute $\Theta\left(\sum_{i=1}^{n} f(i)\right)$ for functions with the basic form $f(n)=\Theta\left(b^{a n} \cdot n^{d} \cdot \log ^{e} n\right)$. (We consider - more general functions at the end of this section.)

$\bar{b}^{\boldsymbol{a}}$	d	e	Type of Sum	$\sum_{i=1}^{n} f(i)$	Examples	
>1	Any	Any	Geometric Increase (dominated by last term)	$\Theta(f(n))$	$\sum_{i=0}^{n} 2^{2^{l}}$	$\approx 1 \cdot 2^{2^{n}}$
					$\sum_{i=0}^{n} b^{i}$	$=\Theta\left(b^{n}\right)$
					$\sum_{i=0}^{n} 2^{i}$	$=\Theta\left(2^{n}\right)$
$=1$	>-1	Any	Arithmetic-like (half of terms approximately equal)	$\Theta(n \cdot f(n))$	$\sum_{i=1}^{n} i^{\text {d }}$	$=\Theta\left(n \cdot n^{d}\right)=\Theta\left(n^{d+1}\right)$
					$\sum_{i=1}^{n} i^{2}$	$=\Theta\left(n \cdot n^{2}\right)=\Theta\left(n^{3}\right)$
					$\sum_{i=1}^{n} i$	$=\Theta(n \cdot n)=\Theta\left(n^{2}\right)$
					$\sum_{i=1}^{n} 1$	$=\Theta(n \cdot 1)=\Theta(n)$
					$\sum_{i=1}^{n} \frac{1}{10.9}$	$=\Theta\left(n \cdot \frac{1}{n^{0.99}}\right)=\Theta\left(n^{0.01}\right)$
	$=-1$	=0	Harmonic	$\Theta(\ln n)$	$\sum_{i=1}^{n} \frac{1}{i}$	$=\log _{e}(n)+\Theta(1)$
	<-1	Any	Bounded tail (dominated by first term)	$\Theta(1)$	$\sum_{i=1}^{n} \frac{1}{12009}$	$=\Theta(1)$
					$\sum_{i=1}^{n} \frac{1}{i^{2}}$	$=\Theta(1)$
<1	Any	Any			$\sum_{i=1}^{n}\left(\frac{1}{2}\right)^{i}$	$=\Theta(1)$
					$\sum_{i=0}^{n} b^{-i}$	$=\Theta(1)$

CPSC 327: Data Surcurues and Algonitms • Spring 2024
from Jeff Edmonds, How to Think About Algorithms ${ }_{2}$

Exponent Rules

Assume that a and b are nonzero re
numbers, and m and n are any integers.
i) Zero Property of Exponent

$$
b^{0}=1
$$

3) Product Property of Exponent $\quad b^{-n}=\frac{1}{b^{n}}$ OR $\quad \frac{1}{b^{-n}}=b^{n}$
$\left(b^{m}\right)\left(b^{n}\right)=b^{m+n} \quad b^{1 / 2}=\sqrt{b}$
Quotient Property of Exponent
$\frac{b^{n}}{b^{n}}=b^{m}$
) Power of a Power Property of Exponent

$$
\left(b^{m}\right)^{n}=b^{m n}
$$

6) Power of a Product Property of Exponent

$$
(a b)^{m}=a^{m} b^{m}
$$

Power of a Quotient Property of Exponen $\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$

Solving Recurrence Relations

$T(n)=a T(n-b)+f(n)$ where $f(n)=\Theta\left(n^{c} \log ^{d} n\right)$
Cases are based on the number of subproblems and $f(n)$.

\mathbf{c}	$\mathbf{f}(\mathbf{n})$	behavior	solution
>1	any	base case dominates (too many leaves)	$T(n)=\Theta\left(a^{n / b}\right)$
1	≥ 1	all levels are important	$T(n)=\Theta(n f(n))$

Logarithms and Exponents

$$
\begin{aligned}
& \text { For the following pairs of functions, indicate whether } \mathrm{f}=\mathrm{O}(\mathrm{~g}) \text {, } \\
& \mathrm{f}=\Omega(\mathrm{g}) \text {, or } \mathrm{f}=\Theta(\mathrm{g}) \text {. } \\
& \text { - } f(n)=\log n^{2}, g(n)=2^{\log n} \quad \text { [pairA] } \\
& \text { - } f(n)=\log _{10} n, g(n)=10 n \quad \text { [pairB] } \\
& \text { - } f(n)=\log _{10} n, g(n)=\log _{2} 2 n \text { [pairC] }
\end{aligned}
$$

- tips
know the growth rate ordering of common functions: $1, \log n, n$,
$\mathrm{n} \log \mathrm{n}, \mathrm{n}^{2}, 2^{\mathrm{n}}, \mathrm{n}$!
simplify other functions to make them more familiar

Solving Recurrence Relations

$T(n)=a T(n / b)+f(n)$ where $f(n)=\Theta\left(n^{c} \log ^{d} n\right)$
Cases are based on the relationship between the number of subproblems, the problem size, and $f(n)$.

(log a) $/(\log$ b) vs c	d	behavior	solution
<	any	top level dominates - more work splitting/combining than in subproblems (root too expensive)	$T(n)=\Theta(f(n))$
=	> -1	all levels are important $-\log n$ steps to get to base case, and roughly same amount of work in each level	$T(n)=\Theta(f(n) \log n)$
=	<-1	base cases dominate - so many	
>	any	subproblems that taking care of all the base cases is more work than splitting/combining (too many leaves)	$\mathrm{T}(\mathrm{n})=\Theta\left(\mathrm{n}^{(\log \mathrm{a})(\log \mathrm{b})}\right)$

Big-Oh for Recurrence Relations

Use the big-Oh for recurrence relations tables to find the Θ approximation for the recurrence relation
$T(n)=3 T\left(\frac{n}{3}\right)+\Theta(n)$.

- $T(n)=2 T(n / 2)+\Theta(\log n)$
- $T(n)=3 T(n / 9)+\Theta(n)$
- $T(n)=8 T(n / 2)+\Theta\left(n^{2}\right)$
- $T(n)=T(n-1)+\Theta(1)$

[^0]: CPSC. 327. Data Stucucures and Aloorithms - Sping 2024

