
  

 

CPSC 327: Data Structures and Algorithms  •  Spring 2024 28

Motivation

• the running time of a loop is the sum of the time taken by 
each iteration
– if the time is the same for each iteration, the total time reduces to 

the number of repetitions times the time per iteration

• the running time of a recursive function is expressed with 
a recurrence relation

• logs and exponents come into play when something is 
repeatedly divided or multiplied

CPSC 327: Data Structures and Algorithms  •  Spring 2024 29

Dealing With Sums

from Jeff Edmonds, How to Think About Algorithms

CPSC 327: Data Structures and Algorithms  •  Spring 2024 30

Big-Oh for Sums

CPSC 327: Data Structures and Algorithms  •  Spring 2024 31

Big-Oh From Algorithms

sum  0←
for i  0..n-1←
  sum += arr[i]
dup  sum-n(n-1)/2←

for i  0..n-1←
  for j  i+1..n-1←
    if arr[i] == arr[j]
      dup  arr[j]←
      break

sort(arr)
for i  0..n-2 ←
  if arr[i] == arr[i+1]
    dup  arr[i]←
    break



  

 

CPSC 327: Data Structures and Algorithms  •  Spring 2024 32

Log Rules

definition of log:
if x = logb(n) then n = bx

log b(x)=
log d(x )

log d(b)
dc log2 (n )=nc log2 (d)

b1 /2=√b

CPSC 327: Data Structures and Algorithms  •  Spring 2024 33

Logarithms and Exponents

• tips
– know the growth rate ordering of common functions: 1, log n, n, 

n log n, n2, 2n, n!
– simplify other functions to make them more familiar

CPSC 327: Data Structures and Algorithms  •  Spring 2024 34

Solving Recurrence Relations

T(n) = a T(n-b) + f(n) where f(n) = Θ(nc logd n)

Cases are based on the number of subproblems and f(n).

a f(n) behavior solution

> 1 any base case dominates
(too many leaves) T(n) = Θ(an/b)

1 ≥ 1 all levels are important T(n) = Θ(n f(n))

CPSC 327: Data Structures and Algorithms  •  Spring 2024 35

Solving Recurrence Relations

T(n) = a T(n/b) + f(n) where f(n) = Θ(nc logd n)

Cases are based on the relationship between the number of 
subproblems, the problem size, and f(n).

(log 
a)/(log 
b) vs c

d behavior solution

< any
top level dominates – more work 
splitting/combining than in subproblems 
(root too expensive)

T(n) = Θ(f(n))

= > -1
all levels are important – log n steps to 
get to base case, and roughly same 
amount of work in each level

T(n) = Θ(f(n) log n)

= < -1 base cases dominate – so many 
subproblems that taking care of all the 
base cases is more work than 
splitting/combining (too many leaves)

T(n) = Θ(n(log a)/(log b))
> any



  

 

CPSC 327: Data Structures and Algorithms  •  Spring 2024 36

Big-Oh for Recurrence Relations


