Motivation

- the running time of a loop is the sum of the time taken by each iteration
 - if the time is the same for each iteration, the total time reduces to the number of repetitions times the time per iteration
- the running time of a recursive function is expressed with a recurrence relation
- logs and exponents come into play when something is repeatedly divided or multiplied

Big-Oh for Sums

CPSC 327: Data Structures and Algorithms . Spring 2024

Use the big-Oh for sums table to find the Θ approximation for the sum $\sum_{i=1}^n i \ \log \ i.$

2. [W] Give the Θ approximation for each of the following sums. Use the big-Oh for sums table.

 $\begin{array}{l} a. \ \Sigma_{i=1..n} \ (log \ i) \\ b. \ \Sigma_{i=1..n} \ (1/2^i) \\ c. \ \Sigma_{i=1..log \ n} \ (n \ i^2) \\ d. \ \Sigma_{i=1..n} \ \Sigma_{j=1..i^2} \ (ij \ log \ i) \end{array}$

CPSC 327: Data Structures and Algorithms • Spring 2024

The following table outlines the few easy rules with which you will be able to compute $\Theta(\sum_{i=1}^{n} f(i))$ for functions with the basic form $f(n) = \Theta(b^{an} \cdot n^{d} \cdot \log^{e} n)$. (We consider more general functions at the end of this section.)

b^a	d	e	Type of Sum	$\sum_{i=1}^{n} f(i)$	Examples	
> 1	Any	Any	Geometric Increase (dominated by last term)	$\Theta(f(n))$	$\frac{\sum_{i=0}^{n} 2^{2^{i}}}{\sum_{i=0}^{n} b^{i}}$ $\frac{\sum_{i=0}^{n} 2^{i}}{2^{i}}$	$\approx 1 \cdot 2^{2^n}$ $= \Theta(b^n)$ $= \Theta(2^n)$
= 1	> -1	Any	Arithmetic-like (half of terms approximately equal)	$\Theta(n \cdot f(n))$	$\frac{\sum_{i=1}^{n} i^{d}}{\sum_{i=1}^{n} i^{2}}$ $\frac{\sum_{i=1}^{n} i}{\sum_{i=1}^{n} 1}$ $\frac{\sum_{i=1}^{n} \frac{1}{i^{0.39}}}{\sum_{i=1}^{n} \frac{1}{i^{0.39}}}$	$\begin{split} &= \Theta(n \cdot n^d) = \Theta(n^{d+1}) \\ &= \Theta(n \cdot n^2) = \Theta(n^3) \\ &= \Theta(n \cdot n) = \Theta(n^2) \\ &= \Theta(n \cdot 1) = \Theta(n) \\ &= \Theta(n \cdot \frac{1}{n^{0.39}}) = \Theta(n^{0.01}) \end{split}$
	= -1	=0	Harmonic	$\Theta(\ln n)$	$\sum_{i=1}^{n} \frac{1}{i}$	$=\log_e(n)+\Theta(1)$
	< -1	Any	Bounded tail (dominated by first term)	Θ(1)	$\frac{\sum_{i=1}^{n} \frac{1}{i^{1.001}}}{\sum_{i=1}^{n} \frac{1}{i^2}}$	$= \Theta(1)$ $= \Theta(1)$
< 1	Any	Any			$\frac{\sum_{i=1}^{n} (\frac{1}{2})^{i}}{\sum_{i=0}^{n} b^{-i}}$	$= \Theta(1)$ $= \Theta(1)$

Big-Oh From Algorithms	<pre>sort(arr) for i ← 0n-2 if arr[i] = arr[i]]</pre>
An array contains each of the numbers 1n plus one duplic value. Which value is duplicated?	dup ← arr[i] break
 Algorithm A uses quicksort or mergsort to sort all of the numbers, then makes one pass through the array lookin for adjacent slots with the same value. 	e ng
 Algorithm B makes one pass through the array to sum t numbers, then uses the formula numbers 1 and subtracts that from the su of the array's value. 	the sum $\leftarrow 0$ e for $i \leftarrow 0n-1$ sum += arr[i] dun \leftarrow sum-n(n-1)/2
 Algorithm C (not mentioned in class) makes one pass through the array and for each value, makes a pass through the rest of the array to see if another copy of t value is found i.e. each value in the array is compared t each other value to find the duplicate. 	hat o for i / 0 n 1
CPSC 327: Data Structures and Algorithms • Spring 2024	for j ← i+1n-1 if arr[i] == arr[j] dup ← arr[j] break

Solving Recurrence Relations

T(n) = a T(n-b) + f(n) where $f(n) = \Theta(n^c \log^d n)$

Cases are based on the number of subproblems and f(n).

	а	f(n)	behavior	solution	
	> 1	any	base case dominates (too many leaves)	$T(n) = \Theta(a^{n/b})$	
	1	≥ 1	all levels are important	$T(n) = \Theta(n \; f(n))$	
CPSC 327: Data Structures and Algorithms • Spring 2024					

Solving Recurrence Relations

T(n) = a T(n/b) + f(n) where $f(n) = \Theta(n^c \log^d n)$

Cases are based on the relationship between the number of subproblems, the problem size, and f(n).

(log a)/(log b) vs c	d	behavior	solution
<	any	top level dominates – more work splitting/combining than in subproblems (root too expensive)	$T(n) = \Theta(f(n))$
=	> -1	all levels are important – log n steps to get to base case, and roughly same amount of work in each level	$T(n) = \Theta(f(n) \log n)$
=	< -1	base cases dominate – so many	
>	any	subproblems that taking care of all the base cases is more work than splitting/combining (too many leaves)	$T(n) = \Theta(n^{(\log a)/(\log b)})$

Big-Oh for Recurrence Relations

Use the big-Oh for recurrence relations tables to find the Θ approximation for the recurrence relation $T(n) = 3T\left(\frac{n}{3}\right) + \Theta(n).$

- $T(n) = 2T(n/2) + \Theta(\log n)$
- T(n) = 3T(n/9) + Θ(n)
- $T(n) = 8T(n/2) + \Theta(n^2)$
- T(n) = T(n-1) + Θ(1)

CPSC 327: Data Structures and Algorithms • Spring 2024