

Data Structures Toolbox

CPSC 327: Data Structures and Algorithms • Spring 2024 2

Key Points

• ADTs vs data structures

• common categories of ADTs
– common container ADTs – characteristics, properties,

operations, applications

• two main kinds of data structures
– characteristics and tradeoffs
– array and linked list operations

• basic implementations of containers

• strategies for improving implementations

CPSC 327: Data Structures and Algorithms • Spring 2024 3

ADTs vs Data Structures

• an abstract data type is defined by its operations (and
concept)
– the ADT is determined by the algorithm's needs

• concrete data structures are used to realize the
implementation of an ADT
– generally have choices, with different time/space tradeoffs
– changing the data structure used to implement a given ADT

does not change the correctness of the algorithm, but may have
a big influence on time/space requirements

• choice of implementation data structure goes hand-in-hand with the
design of the algorithm

CPSC 327: Data Structures and Algorithms • Spring 2024 4

Fundamental ADTs

Common categories of ADTs –

• containers provide storage and retrieval of elements
independent of value
– ordering of elements depends on the structure of the container

rather than the elements themselves
– elements can be of any type

• dictionaries provide access to elements by value
– lookup according to an element's key
– elements can be of any type; the key type must support equality

comparison

• priority queues provide access to elements in order by
content
– ordered by priority associated with elements
– elements can be of any type; priority must be comparable (so

there is an ordering)

CPSC 327: Data Structures and Algorithms • Spring 2024 5

ADTs – Common Containers
Vector / List /
Sequence

linear order, access by
rank (index) or position

rank-based operations
● add(x), add(r,x) – add x at the end / with rank r
● get(r) – get element with rank r
● remove(r) – remove (and return) elt with rank r
● replace(r,x) – replace elt at rank r with x

position-based operations
● first, last() – get first/last position
● before(p), after(p) – get position before/after p
● addBefore(p,x), addAfter(p,x) – insert x

after/before position p
● get(p) – get element at position p
● remove(p) – remove (and return) elt at pos p
● replace(p,x) – replace elt at pos p with x

bridge operations
● atRank(r) – get pos at rank r
● rankOf(p) – get rank of pos p

Stack linear order, access only
at one end
● LIFO – insert and

remove at the same end

● push(x) – insert x at the top of the stack
● top() – return top item (without removal)
● pop() – remove and return the top item on the

stack

Queue

variations
● Deque –

insert/remove
at either end

linear order, access only
at both ends
● FIFO – insert at one

end, remove from the
other

● enqueue(x) – insert x at the back of the queue
● peek() – return front item (without removal)
● dequeue() – remove and return the front item

in the queue

typical operations

CPSC 327: Data Structures and Algorithms • Spring 2024 7

ADTs for Algorithm Design

The kind of access to elements imposed by different types
of containers can be exploited to achieve algorithmic goals.

ADT some applications of the ADT

Vector / List /
Sequence

general-purpose container

round-robin scheduling, taking turns

Stack match most recent thing, proper nesting, reversing

DFS – go deep before backing up

has ties to recursive procedures – supports iterative
implementation of recursive ideas

Queue FIFO order minimizes waiting time

BFS – spread out in levels

round-robin scheduling, taking turns

CPSC 327: Data Structures and Algorithms • Spring 2024 8

Data Structures

There are two main kinds of data structures –

• contiguous structures occupy consecutive memory
locations
– e.g. arrays

• linked structures consist of separate chunks of memory
connected by references or pointers
– e.g. linked lists, many trees, graphs

CPSC 327: Data Structures and Algorithms • Spring 2024 9

common problems

 – recursive rather than iterative (loop) solution

 – doubly-linked nodes instead of singly-linked

 – working with elements instead of nodes
(moving elements instead of re-linking nodes,
comparing elements rather than nodes)

 – missing or incorrectly handling special cases
(potential special cases: empty list, one-node list,
todel null, todel last, todel first, todel not
actually in the list)

 – mixing up .equals and ==

 – creating a new node object instead of only a
new node variable

style considerations

 – loop body shouldn’t contain steps only done at
the very beginning or the very end

linked list concepts
 – singly-linked list

 – insert/remove node involves re-linking
rather than shifting or changing elements

CPSC 327: Data Structures and Algorithms • Spring 2024 10

strategy – use examples!
 - draw before and after pictures
 - identify what changes
 - get convenient references for those things
 - update the values

be sure to consider several cases to make
sure your solution works in general

be sure to consider special cases such as
the first and last things, empty or one-
element list, null values

CPSC 327: Data Structures and Algorithms • Spring 2024 12

arrays linked structures

access – constant time given the
index (efficient random access)

access – time depends on position
relative to the beginning
(inefficient random access)

space efficiency – no overhead
(links, end-of-record markers)
beyond the data elts themselves
though to efficiently handle resizing, up
to O(n) empty slots are allowed

overhead of at least one pointer
per data value

memory locality – iterating through
involves access to nearby memory
blocks which can be efficiently
loaded into a cache

no memory locality

fixed size – must resize or waste
space
dynamic arrays support resizing (when
doubled in size) in O(1) amortized time
and still O(n) space, but O(n) worst case
insert and ~2x constant factors

no overflow, growing is O(1) when
the insert position is known

insert, remove other than at the end
requires shifting (O(n))

insert, remove at any position
O(1), given a node pointer

Characteristics and Tradeoffs

CPSC 327: Data Structures and Algorithms • Spring 2024 14

Basic Implementation of Containers

Vector / List /
Sequence

classic array vs linked list tradeoffs
● insert/remove not at the end requires shifting in the array (O(n)),

but access by rank (index) is O(r) for linked list
● dynamic array has overhead in time (resizing) and space (empty

slots), linked list has overhead in space (pointers)

Stack O(1) push, pop with array and linked list
● top of stack = end of array, head of linked list

choice of array vs linked list is largely determined by whether there is an
upper bound on the size of the stack that is known in advance (static array)
or not (dynamic array or linked list – time vs space overhead tradeoff)

Queue O(1) enqueue or dequeue, O(n) for other with array, linked list

How to use the data structure to realize the ADT operations?
• decide how container elements will be arranged in the data structure –

use linear order of array or linked list to store the linear order of the
container

• options: forward or reverse?
– beginning of array / head of linked list can match beginning / top / front of

container
– end of array / head of linked list can match beginning / top / front of container

CPSC 327: Data Structures and Algorithms • Spring 2024 15

How Do We Apply This Stuff?

• ADTs
– algorithm may boil down to just manipulating the right ADT, or

become much simpler

– once you have an algorithm, identify the operations it needs
– find a standard ADT that provides those operations (and ideally

little else) and choose an efficient implementation, or design a
new implementation to efficiently support those operations

• data structures
– to choose an efficient implementation for standard ADT
– to design your own data structure or customize a standard

implementation if a standard ADT/implementation doesn’t meet
your needs

CPSC 327: Data Structures and Algorithms • Spring 2024 16

Basic Implementation of Containers

Vector / List /
Sequence

classic array vs linked list tradeoffs
● insert/remove not at the end requires shifting in the array (O(n)),

but access by rank (index) is O(r) for linked list
● dynamic array has overhead in time (resizing) and space (empty

slots), linked list has overhead in space (pointers)

Stack O(1) push, pop with array and linked list
● top of stack = end of array, head of linked list

choice of array vs linked list is largely determined by whether there is an
upper bound on the size of the stack that is known in advance (static array)
or not (dynamic array or linked list – time vs space overhead tradeoff)

Queue O(1) enqueue or dequeue, O(n) for other with array, linked list

Can we do better?

• Vector/List/Sequence – tradeoff is due to the nature of the data
structures (random access vs sequential access)

• Stack – can't beat O(1)
• Queue – …

CPSC 327: Data Structures and Algorithms • Spring 2024 17

Improving an Implementation – Queue

Consider the linked list implementation with the head of the
queue at the beginning of the list.
• enqueue(x) is O(n) – inserting at the end of the list requires finding

the last node
• dequeue() is O(1) – removing from head just involves updating

pointers

enqueue is slow because we have to find the tail of the list.

Can we store a tail pointer instead?
• enqueue – O(1) to locate the node before the insertion point

(current tail), O(1) to create new node and link to current tail, O(1)
to update current tail to new node

• dequeue is not affected (unless the last element is removed – tail
becomes null)

→ O(1) enqueue and dequeue using a linked list with a
tail pointer

CPSC 327: Data Structures and Algorithms • Spring 2024 18

Improving an Implementation – Queue

Consider the array implementation with the head of the
queue at the beginning of the array.
• enqueue(x) is O(1) – insert at the end of the array
• dequeue() is O(n) – removing from head of array requires shifting

Do we have to shift?
• we shift to keep the head of the queue at 0 and the tail

position based on the size

Can we store the head and tail positions instead?
• O(1) to locate head/tail
• O(1) to update head/tail – new value is next position

– “next position” at the end of the array wraps around to 0

→ O(1) enqueue and dequeue using a circular array

CPSC 327: Data Structures and Algorithms • Spring 2024 19

Doing Better

• if the slowness is because of having to find or compute
something, can you store it instead?
– must consider the cost of updating the stored info
–

• if the slowness is the result of not storing something, can
you store it instead?
– must consider the cost of updating the additional info stored

CPSC 327: Data Structures and Algorithms • Spring 2024 20

Containers in Java

ADT in Java
Vector /
List /
Sequence

List – interface
LinkedList – linked list implementation
ArrayList – array implementation

Vector – legacy class and use is discouraged (array
implementation)

Deque (double-ended queue) – interface
ArrayDeque – array implementation
LinkedList – linked list implementation

Stack Stack – legacy class, Deque preferred

Queue Queue – interface
ArrayDeque – array implementation
LinkedList – linked list implementation

Collections Framework overview:
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/doc-files/coll-
overview.html

