

CPSC 327: Data Structures and Algorithms • Spring 2024 39

Binary Search Trees

• find
– moving down, 1-finger (only go to one

child) pattern → loop
– observation: if the element isn't there,

search ends at a (dummy) leaf

• insert
– can only insert at a leaf
– the correct insertion point is the leaf where an unsuccessful

search for the element ends up

• remove
– can only remove above a leaf
– if the element to remove does not have at least one leaf child,

swap it with a safe element which does has at least one leaf
child

• i.e. the next element larger or smaller than the one to remove

(dummy leaves not shown)

CPSC 327: Data Structures and Algorithms • Spring 2024 40

Binary Search Trees

• visit all elements in order
– moving down, both children pattern → recursion
– need to visit smaller elements before the current node's element

before the larger elements → inorder traversal

(dummy leaves not shown)

CPSC 327: Data Structures and Algorithms • Spring 2024 41

BST Height

• height of a binary search tree
– best case is O(log n)
– worst case is O(n)

• whether a BST of a given size is balanced
(O(log n) height) or unbalanced (O(n)
height) depends on the order of insertions
and removals, not the elements in the tree

• can we do better?
– try to keep the tree balanced...

CPSC 327: Data Structures and Algorithms • Spring 2024 42

AVL Trees

• invented by Georgy Adelson-Velsky and
Evgenii Landis in 1962

• first known balanced BST data structure

An AVL tree is a BST + a height balance property:
• for every node, the height of the node's left subtree is no

more than one different from the height of the node's right
subtree

The height balance property ensures that the height of an
AVL tree with n nodes is O(log n).

CPSC 327: Data Structures and Algorithms • Spring 2024 43

Height of AVL Trees

Let N(h) be the minimum number of nodes in an AVL tree of
height h.

– a tree with the minimum number of nodes for its height is also
the tallest possible for that number of nodes

Then
– N(h) = 1+N(h-1)+N(h-2)

• one child must have height h-1 in
order for the whole tree to have
height h, and N(h-1) is the minimum
number of nodes that subtree can have

• the other child's height can be no more
than one different, so it can't have
height less than h-2, and N(h-2) is the
minimum number of nodes that subtree
can have

• +1 for the root

– N(1) = 1, N(2) = 2
• can't have fewer than one node per level of the tree

http://www.cs.emory.edu/~cheung/Courses/253/
Syllabus/Trees/AVL-height.html

CPSC 327: Data Structures and Algorithms • Spring 2024 44

Height of AVL Trees

• N(h) = 1+N(h-1)+N(h-2) ≤ 1+2N(h-1)

N(h) = O(2h)
 → h = log(N(h))

CPSC 327: Data Structures and Algorithms • Spring 2024 46

Operations on AVL Trees

An AVL tree is a BST, so the find operation is no different.

For insert and remove:

• insert/remove as dictated by the (BST) structural and
ordering rules

• fix up the broken balance property as needed

CPSC 327: Data Structures and Algorithms • Spring 2024 47

Insert

• structural property dictates that insertion only occurs at a
node with fewer than 2 children

• ordering property dictates where

insert 20

no height-balance violations – we're done!

insert 5

height-balance property violated – uh oh!

20

5

9

9

CPSC 327: Data Structures and Algorithms • Spring 2024 48

Remove

• structural property dictates that removal only occurs at a
node with fewer than 2 children
– may need to swap desired element with next larger/smaller in

order to satisfy the structural property

remove 3

swap with 4 and remove
no height-balance violations –
we're done!

remove 9

height-balance property
violated – uh oh!

9

9

9

4

CPSC 327: Data Structures and Algorithms • Spring 2024 49

Restructuring

Both insertion and deletion may break the height balance
property.

Restore it by performing one or more restructuring
operations (or rotations).

CPSC 327: Data Structures and Algorithms • Spring 2024 50

Restructuring

5

9

let z be the first unbalanced node (working up the
tree from the point of insertion/deletion)

let y be z's tallest child

let x be y's tallest child

5

9

relabel x, y, z as a, b, c according to their correct
sorted order

label the other subtree children of a, b, c as T1,
T2, T3, T4 according to their correct sorted order

z

y

x

a

c

b

T1

T2
T3

T4

rearrange as shown:

b

a c

T1 T2 T3 T4

CPSC 327: Data Structures and Algorithms • Spring 2024 51

Restructuring

5

9

a

c

b

T1

T2
T3

T4

rearrange as shown:

b

a c

T1 T2 T3 T4

9

4

3 6

5 71

height balance property restored!

CPSC 327: Data Structures and Algorithms • Spring 2024 52

Restructuring

How many restructuring operations are needed?

Observation.
• restructuring reduces the height of a subtree

Insertion –
• insertion increases the height of a subtree, so one

restructuring is sufficient to shorten it and restore balance

Removal –
• removal decreases the height of a subtree, so one

restructuring may result in only pushing the imbalance
higher up the tree

• O(log n) restructurings may be required

CPSC 327: Data Structures and Algorithms • Spring 2024 53

Warmup

– insert/remove as normal for a BST, then fix the balance property if broken

– must check from the inserted/removed node back up to the root to find
unbalanced nodes – what becomes unbalanced might not be directly above
the new/removed node

– at most one restructuring needed for insertion, but have to check the whole
removed node to root path for removal (may need multiple restructurings)

insert 65

insert 20 insert 45

CPSC 327: Data Structures and Algorithms • Spring 2024 54

Warmup

– insert/remove as normal for a BST, then fix the balance property if broken

– must check from the inserted/removed node back up to the root to find
unbalanced nodes – what becomes unbalanced might not be directly above
the new/removed node

– at most one restructuring needed for insertion, but have to check the whole
removed node to root path for removal (may need multiple restructurings)

delete 70 delete 50

delete 20

swap with successor

CPSC 327: Data Structures and Algorithms • Spring 2024 55

can you rearrange leaves e.g.
swap 25 and 35?

 → no, that would break the
ordering property

does it matter if you swap with
successor or predecessor?

 → no, but you should be consistent
within a given implementation

 → yes, for problems that specify a
particular swap, you should do that
swap

CPSC 327: Data Structures and Algorithms • Spring 2024 56

Running Time

• initial BST insert/remove – O(log n)
• number of nodes to check for balance – O(log n)
• time to perform a balance check – O(1) if height info is

stored for each node
• time to perform one restructuring – O(1)
• number of restructurings performed – 1 for insertion,

O(log n) for removal
• time to update stored balance information – O(log n)

nodes affected, O(1) per

Total time: O(log n) for insert/remove

CPSC 327: Data Structures and Algorithms • Spring 2024 57

Implementation

• start with an implementation of a binary tree

ADT characterized
by

typical operations

BinaryTree hierarchical
ordering

size(), isEmpty()
structural accessors
structural mutators: expand leaf, remove above leaf
manipulate elements: set, swap

CPSC 327: Data Structures and Algorithms • Spring 2024 58

Implementing BinaryTree – TreeNode

10

operation linked structure

instance variables ● element, parent, left
child, right child

getElement() O(1) – return element

CPSC 327: Data Structures and Algorithms • Spring 2024 59

Implementing BinaryTree

operation linked structure
instance variables ● root, size

size() Th(1) – return size

isEmpty() Th(1) – return size == 0

getParent(node)
getLeftChild(node)
getRightChild(node)

Th(1) – return value of
instance variable in the
node

expandLeaf(node) Th(1) – create two new
nodes, update links, size
+= 2

removeAboveLeaf(node) Th(1) – relink
grandparent to sibling,
size -= 2

setElement(node,elt) Th(1) – change instance
var in node

swapElements(node1,
 node2)

Th(1) – essentially 2
setElements

10

20 50

30

40

90
80

70
60

(parent pointers
not shown)

