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Binary Search Trees

• find
– moving down, 1-finger (only go to one                                     

child) pattern → loop
– observation: if the element isn't there,                                 

search ends at a (dummy) leaf

• insert
– can only insert at a leaf
– the correct insertion point is the leaf where an unsuccessful 

search for the element ends up

• remove
– can only remove above a leaf
– if the element to remove does not have at least one leaf child, 

swap it with a safe element which does has at least one leaf 
child

• i.e. the next element larger or smaller than the one to remove

(dummy leaves not shown)
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Binary Search Trees

• visit all elements in order
– moving down, both children pattern → recursion
– need to visit smaller elements before the current node's element 

before the larger elements → inorder traversal

(dummy leaves not shown)
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BST Height

• height of a binary search tree
– best case is O(log n)
– worst case is O(n)

• whether a BST of a given size is balanced 
(O(log n) height) or unbalanced (O(n) 
height) depends on the order of insertions 
and removals, not the elements in the tree

• can we do better? 
– try to keep the tree balanced...
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AVL Trees

• invented by Georgy Adelson-Velsky and                                   
Evgenii Landis in 1962

• first known balanced BST data structure

An AVL tree is a BST + a height balance property:
• for every node, the height of the node's left subtree is no 

more than one different from the height of the node's right 
subtree

The height balance property ensures that the height of an 
AVL tree with n nodes is O(log n).
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Height of AVL Trees

Let N(h) be the minimum number of nodes in an AVL tree of 
height h.

– a tree with the minimum number of nodes for its height is also 
the tallest possible for that number of nodes

Then
– N(h) = 1+N(h-1)+N(h-2)

• one child must have height h-1 in                                                          
order for the whole tree to have                                                           
height h, and N(h-1) is the minimum                                                  
number of nodes that subtree can have

• the other child's height can be no more                                                   
than one different, so it can't have                                                        
height less than h-2, and N(h-2) is the                                            
minimum number of nodes that subtree                                                      
can have

• +1 for the root

– N(1) = 1, N(2) = 2
• can't have fewer than one node per level of the tree

http://www.cs.emory.edu/~cheung/Courses/253/
Syllabus/Trees/AVL-height.html
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Height of AVL Trees

• N(h) = 1+N(h-1)+N(h-2) ≤ 1+2N(h-1)

N(h) = O(2h)
 → h = log(N(h))
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Operations on AVL Trees

An AVL tree is a BST, so the find operation is no different.

For insert and remove:

• insert/remove as dictated by the (BST) structural and 
ordering rules

• fix up the broken balance property as needed
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Insert

• structural property dictates that insertion only occurs at a 
node with fewer than 2 children

• ordering property dictates where

insert 20

no height-balance violations – we're done!

insert 5

height-balance property violated – uh oh!

20

5

9

9
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Remove

• structural property dictates that removal only occurs at a 
node with fewer than 2 children
– may need to swap desired element with next larger/smaller in 

order to satisfy the structural property

remove 3

swap with 4 and remove
no height-balance violations – 
we're done!

remove 9

height-balance property 
violated – uh oh!

9

9

9

4
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Restructuring

Both insertion and deletion may break the height balance 
property.

Restore it by performing one or more restructuring 
operations (or rotations).
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Restructuring

5

9

let z be the first unbalanced node (working up the 
tree from the point of insertion/deletion)

let y be z's tallest child

let x be y's tallest child

5

9

relabel x, y, z as a, b, c according to their correct 
sorted order

label the other subtree children of a, b, c as T1, 
T2, T3, T4 according to their correct sorted order

z

y

x

a

c

b

T1

T2
T3

T4

rearrange as shown:

b

a c

T1     T2     T3    T4
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Restructuring

5

9

a

c

b

T1

T2
T3

T4

rearrange as shown:

b

a c

T1     T2     T3    T4

9

4

3 6

5 71

height balance property restored!
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Restructuring

How many restructuring operations are needed?

Observation.
• restructuring reduces the height of a subtree

Insertion – 
• insertion increases the height of a subtree, so one 

restructuring is sufficient to shorten it and restore balance

Removal – 
• removal decreases the height of a subtree, so one 

restructuring may result in only pushing the imbalance 
higher up the tree

• O(log n) restructurings may be required
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Warmup

– insert/remove as normal for a BST, then fix the balance property if broken

– must check from the inserted/removed node back up to the root to find 
unbalanced nodes – what becomes unbalanced might not be directly above 
the new/removed node

– at most one restructuring needed for insertion, but have to check the whole 
removed node to root path for removal (may need multiple restructurings)

insert 65

insert 20 insert 45
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Warmup

– insert/remove as normal for a BST, then fix the balance property if broken

– must check from the inserted/removed node back up to the root to find 
unbalanced nodes – what becomes unbalanced might not be directly above 
the new/removed node

– at most one restructuring needed for insertion, but have to check the whole 
removed node to root path for removal (may need multiple restructurings)

delete 70 delete 50

delete 20

swap with successor
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can you rearrange leaves e.g. 
swap 25 and 35?

 → no, that would break the 
ordering property

does it matter if you swap with 
successor or predecessor?

 → no, but you should be consistent 
within a given implementation

 → yes, for problems that specify a 
particular swap, you should do that 
swap



  

 

CPSC 327: Data Structures and Algorithms  •  Spring 2024 56

Running Time

• initial BST insert/remove – O(log n)
• number of nodes to check for balance – O(log n)
• time to perform a balance check – O(1) if height info is 

stored for each node
• time to perform one restructuring – O(1)
• number of restructurings performed – 1 for insertion, 

O(log n) for removal
• time to update stored balance information – O(log n) 

nodes affected, O(1) per

Total time: O(log n) for insert/remove
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Implementation

• start with an implementation of a binary tree

ADT characterized 
by

typical operations

BinaryTree hierarchical 
ordering

size(), isEmpty()
structural accessors
structural mutators: expand leaf, remove above leaf
manipulate elements: set, swap
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Implementing BinaryTree – TreeNode

10

operation linked structure

instance variables ● element, parent, left 
child, right child

getElement() O(1) – return element
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Implementing BinaryTree

operation linked structure
instance variables ● root, size

size() Th(1) – return size

isEmpty() Th(1) – return size == 0

getParent(node)
getLeftChild(node)
getRightChild(node)

Th(1) – return value of 
instance variable in the 
node

expandLeaf(node) Th(1) – create two new 
nodes, update links, size 
+= 2

removeAboveLeaf(node) Th(1) – relink 
grandparent to sibling, 
size -= 2

setElement(node,elt) Th(1) – change instance 
var in node

swapElements(node1, 
                        node2)

Th(1) – essentially 2 
setElements

10

20 50

30

40

90
80

70
60

(parent pointers 
not shown)


