

CPSC 327: Data Structures and Algorithms • Spring 2024 92

Hashtables

Balanced search trees provide O(log n) find, insert, remove.
But can we do better?

O(1) would be the logical goal to strive for.
But how?

Observations.
• find is presumably the most commonly-used operation for

Map, so it should be most efficient
• arrays have O(1) lookup by index

So – can we find a way to convert a key to an integer array
index in O(1) time?

CPSC 327: Data Structures and Algorithms • Spring 2024 93

Hashtables

Let N be the size of the array.

• key → index is easy if the key is already an integer 0..N-1

Otherwise use a hash function h(k) to convert key k to an
index.

• e.g. h(k) = k mod N if k is an integer

• e.g. h(k) = ∑ a|k|-(i+1) char(ki) mod N if k is a string
– a = size of the alphabet
– char(c) maps c to an integer 0..a-1

CPSC 327: Data Structures and Algorithms • Spring 2024 94

Hash Functions

Challenges.

• h(k) must be efficient to compute, since it must be
computed for every find, insert, remove operation
– h(k) = k mod N → O(1)
– h(k) = ∑ a|k|-(i+1) char(ki) mod N → O(|k|)

Must factor in this time if not O(1) – though it often depends on
something which is in practice a constant with respect to n.

• h(k) typically maps a large range of key values into the
much smaller range 0..N-1 so collisions may occur
– should spread keys over indexes as evenly as possible

• choosing N to be a reasonably large prime helps with this
– (but there is a tradeoff – larger N means more space for hashtable)

– sensitive to particular distribution of keys in a given application

CPSC 327: Data Structures and Algorithms • Spring 2024 95

Collision Resolution

What to do with two elements whose keys hash to the same
value?

• separate chaining – store a list of elements at each slot in
the array

• open addressing – find an alternate slot if the desired one
is full

CPSC 327: Data Structures and Algorithms • Spring 2024 96

Separate Chaining

• operations
– find – compute h(k), then search that list for desired key
– insert – compute h(k), then add to that list
– remove – find + remove from list

CPSC 327: Data Structures and Algorithms • Spring 2024 97

CPSC 327: Data Structures and Algorithms • Spring 2024 100

Separate Chaining

• expected size of each list is n/N
– assuming hash function distributes keys well
– reduces to O(1) if n ≤ N or is never more than a fixed multiple of

N i.e. hashtable is not too full

• typical implementations use unsorted linked lists

– insert – O(1)
– find, remove

• expected O(n/N) if keys are well distributed
– reduces to O(1) if n/N is bounded (e.g. n < N)

• worst case O(n) if all keys hash to same index

– can add move-to-front heuristic if some keys are searched for
more frequently than others

– overhead for storing pointers

CPSC 327: Data Structures and Algorithms • Spring 2024 101

Separate Chaining

• what about sorted linked lists?
– can't exploit binary search with linked lists, but approximately

halves the cost of an unsuccessful search for find, remove
– insert O(n/N)

• what about arrays?
– find is faster if sorted (binary search) but then have cost of

shifting on insert/remove
– still have space overhead (empty slots to avoid frequent

shrinking/growing) + time overhead (shrinking/growing)

CPSC 327: Data Structures and Algorithms • Spring 2024 102

Separate Chaining

• more sophisticated implementations – array-based

– eliminate space overhead – use an array of size k for a list of k
elements (dynamic array)

• no linked list pointers or empty slots
• can exploit hardware features that provide greater efficiency for dealing

with sequential memory positions
• adds cost of array resizing on insert, remove

– eliminate search through chain – use a hashtable of size k2 for a
list of k elements with a perfect hash function (no collisions),
rebuilding when a collision occurs (dynamic perfect hashing)

• guaranteed O(1) worst-case find
• low amortized insert time – rebuilding is infrequent because load factor of

secondary tables is 1/k
• with N = O(n), expected total space is O(n), worst case O(n2)

CPSC 327: Data Structures and Algorithms • Spring 2024 103

Separate Chaining

• more sophisticated implementations – other data
structures

– O(log n) operations – balanced search tree

• O(log n) worst case for find, insert, remove

• additional overhead not generally worth it except in special cases
– e.g. high load factor (n/N ≥ 10)
– e.g. likely non-uniform hash distribution (some long chains)
– e.g. need to guarantee good performance in worst case

• using a larger hash table or finding a better hash function may be better
alternatives

CPSC 327: Data Structures and Algorithms • Spring 2024 105

Open Addressing

• requires n ≤ N

If h(k) is full, follow a probe sequence to locate element /
find first empty slot for insertion.

• linear probing – h(k) + c∙i [c is often 1]
– c should be relatively prime to N (not a problem if N is prime)
– sequential probing when c=1

• quadratic probing – h(k) + i2

• double hashing – h(k) + i h'(k)

CPSC 327: Data Structures and Algorithms • Spring 2024 106

Open Addressing

Deletion requires special handling.

• can re-insert all elements following the deleted element
– if the load factor is low enough, this should only be a small

number of elements

• can mark empty slot as “deleted” – find continues on,
insert can fill
– drawback: probe sequence lengths are based on the largest the

collection has been, not the current size
– solution: can periodically re-hash everything to clean up

CPSC 327: Data Structures and Algorithms • Spring 2024 107

 – linear probing – h(k) + c∙i [c is often 1]
 c should be relatively prime to N (not a problem if N is prime)
 sequential probing when c=1

 – quadratic probing – h(k) + i2

 – double hashing – h(k) + i h'(k)

CPSC 327: Data Structures and Algorithms • Spring 2024 108

Open Addressing

• linear probing – h(k) + c∙i [c is often 1]
– exhibits better memory locality than other options
– suffers from clustering

• keys that hash to the same index or adjacent indexes interfere with each
other

• performance degrades quickly as n approaches N

– sensitive to key distribution
• uneven key distribution exacerbates the clustering problem

• quadratic probing – h(k) + i2

– suffers from secondary clustering
• keys that hash to adjacent slots have adjacent probe sequences

– may not find an empty slot even if one exists

• double hashing – h(k) + i h'(k)
– expected length of unsuccessful probe sequence is 1/(1-α) →

O(1) if table is not too full
• α = n/N (load factor)

CPSC 327: Data Structures and Algorithms • Spring 2024 109

Hashtables

If done properly, hashtables provide O(1) expected time for
find, insert, remove – once h(k) has been computed.

– “done properly” means load factor isn't too high and is kept
bounded, and there is good distribution of hash values

Computing h(k) can take time.
– e.g. for strings, computing h(k) = O(|k|) … which reduces to O(1)

if |k| is bounded, but must be considered as O(|k|) otherwise

Worst-case behavior is O(n) for find and remove, unless
separate chaining + a fancier bucket implementation is used
(which has memory overhead).

– worst case occurs when key distribution is poor and load factor
is high

CPSC 327: Data Structures and Algorithms • Spring 2024 110

Hashtables

What about other operations?

• initialization
– O(N) – size of the array used for the hashtable

• traversal
– in most cases O(n+N) for separate chaining – must examine

each index of table as well as all elements
• can be worse e.g. worst case dynamic perfect hashing

– O(N) for open addressing

• find next larger/smaller key, find min/max key
– full traversal is required because h(k) does not preserve original

ordering of keys

CPSC 327: Data Structures and Algorithms • Spring 2024 111

Questions

How does the type of thing (double, int, String, object,
etc) affect the running time?

• it doesn’t, as long as only simple steps are involved
– e.g. assignment is a simple step regardless of type – primitive

types hold the value, object types hold the reference
– e.g. copy is not necessarily a simple step – time to copy a
String or array depends on the length

• typically the running time is expressed in terms of n, the
number of elements in the collection

• there may be other factors which don’t depend on n but
which also aren’t exactly constants
– e.g. hashing a String depends on the length of the string, not

the number of elements in the hashtable
– keep those other quantities in the big-Oh unless you know they

are bounded

