Hashtables

Balanced search trees provide O(log n) find, insert, remove.
But can we do better?

O(1) would be the logical goal to strive for.
But how?

Observations.
find is presumably the most commonly-used operation for
Map, so it should be most efficient

arrays have O(1) lookup by index

So — can we find a way to convert a key to an integer array
index in O(1) time?

CPSC 327: Data Structures and Algorithms + Spring 2024

Hash Functions

Challenges.

h(k) must be efficient to compute, since it must be
computed for every find, insert, remove operation
h(k) = k mod N - 0O(1)
h(k) = 3 a® " char(k) mod N - O(IK])

Must factor in this time if not O(1) — though it often depends on
something which is in practice a constant with respect to n.

h(k) typically maps a large range of key values into the
much smaller range 0..N-1 so collisions may occur
should spread keys over indexes as evenly as possible

choosing N to be a reasonably large prime helps with this
(but there is a tradeoff — larger N means more space for hashtable)

sensitive to particular distribution of keys in a given application

CPSC 327: Data Structures and Algorithms + Spring 2024

Hashtables

Let N be the size of the array.
key - index is easy if the key is already an integer 0..N-1

Otherwise use a hash function h(k) to convert key k to an
index.

e.g. h(k) = k mod N if k is an integer

e.g. h(k) = ¥ a*®? char(k) mod N if k is a string
a = size of the alphabet
char(c) maps c to an integer 0..a-1

CPSC 327: Data Structures and Algorithms + Spring 2024

Collision Resolution

What to do with two elements whose keys hash to the same
value?

separate chaining — store a list of elements at each slot in
the array

open addressing — find an alternate slot if the desired one
is full

|— |w
w
l—t |*
o
— |=
<
o
<

‘ ‘
L L L 01 2 3 456 78 9
[34]s]ss[a1] J2] [3]8 [13]

ETolf T2

[

1
o O) el

[

cPsC 32|

Separate Chaining

* operations
find — compute h(k), then search that list for desired key
insert — compute h(k), then add to that list
remove — find + remove from list

0o 1 2 3 4 5 6 7 8 9

LT T

T T B T

= =] = [2]= [= B4

Lo L L

L L o L
; ;
=
L

CPSC 327: Data Structures and Algorithms + Spring 2024

Separate Chaining

« expected size of each list is n/N
assuming hash function distributes keys well

reduces to O(1) if n < N or is never more than a fixed multiple of
N i.e. hashtable is not too full

* typical implementations use unsorted linked lists

insert — O(1)
find, remove
« expected O(n/N) if keys are well distributed
reduces to O(1) if n/N is bounded (e.g. n < N)
« worst case O(n) if all keys hash to same index

can add move-to-front heuristic if some keys are searched for
more frequently than others

overhead for storing pointers

CPSC 327: Data Structures and Algorithms + Spring 2024

Perform the following operations on a hashtable of size

7 under the scenario listed, showing the contents of the
hashtable after each step: insert 35, insert 10, insert 18,
insert 24, insert 5, insert 11, delete 10, delete 24, delete
11, insert 74

« chaining, using hash function v%7

CPSC 327: Data Structures and Algorithms + Spring 2024

Separate Chaining

+ what about sorted linked lists?

can't exploit binary search with linked lists, but approximately
halves the cost of an unsuccessful search for find, remove

insert O(n/N)

* what about arrays?
find is faster if sorted (binary search) but then have cost of
shifting on insert/remove

still have space overhead (empty slots to avoid frequent
shrinking/growing) + time overhead (shrinking/growing)

CPSC 327: Data Structures and Algorithms + Spring 2024

Separate Chaining

more sophisticated implementations — array-based

eliminate space overhead — use an array of size k for a list of k
elements (dynamic array)
no linked list pointers or empty slots

can exploit hardware features that provide greater efficiency for dealing
with sequential memory positions

adds cost of array resizing on insert, remove

eliminate search through chain — use a hashtable of size k? for a

list of k elements with a perfect hash function (no collisions),

rebuilding when a collision occurs (dynamic perfect hashing)
guaranteed O(1) worst-case find

low amortized insert time — rebuilding is infrequent because load factor of
secondary tables is 1/k

with N = O(n), expected total space is O(n), worst case O(n?)

CPSC 327: Data Structures and Algorithms + Spring 2024 102

Open Addressing

requires n <N

If h(k) is full, follow a probe sequence to locate element /
find first empty slot for insertion.

linear probing — h(k) + ci [cis often 1]
¢ should be relatively prime to N (not a problem if N is prime)
sequential probing when c=1

quadratic probing — h(k) + i
double hashing — h(k) + i h'(k)

CPSC 327: Data Structures and Algorithms + Spring 2024 105

Separate Chaining

more sophisticated implementations — other data
structures

O(log n) operations — balanced search tree
O(log n) worst case for find, insert, remove

additional overhead not generally worth it except in special cases
e.g. high load factor (n/N = 10)
e.g. likely non-uniform hash distribution (some long chains)
e.g. need to guarantee good performance in worst case

using a larger hash table or finding a better hash function may be better
alternatives

CPSC 327: Data Structures and Algorithms + Spring 2024 103

Open Addressing

Deletion requires special handling.

can re-insert all elements following the deleted element

if the load factor is low enough, this should only be a small
number of elements

can mark empty slot as “deleted” — find continues on, *
insert can fill

drawback: probe sequence lengths are based on the largest the
collection has been, not the current size

solution: can periodically re-hash everything to clean up

CPSC 327: Data Structures and Algorithms + Spring 2024 106

Perform the following operations on a hashtable of size

7 under the scenario listed, showing the contents of the
hashtable after each step: insert 35, insert 10, insert 18,
insert 24, insert 5, insert 11, delete 10, delete 24, delete
11, insert 74

» sequential probing, using hash function v%7

— linear probing — h(k) + c-i [c is often 1]
¢ should be relatively prime to N (not a problem if N is prime)
sequential probing when c=1

— quadratic probing — h(k) + i

— double hashing — h(k) + i h'(k)

CPSC 327: Data Structures and Algorithms + Spring 2024 107

Hashtables

If done properly, hashtables provide O(1) expected time for
find, insert, remove — once h(k) has been computed.

“done properly” means load factor isn't too high and is kept
bounded, and there is good distribution of hash values

Computing h(k) can take time.

e.g. for strings, computing h(k) = O(|k|) ... which reduces to O(1)
if |k| is bounded, but must be considered as O(|k|) otherwise

Worst-case behavior is O(n) for find and remove, unless
separate chaining + a fancier bucket implementation is used
(which has memory overhead).

worst case occurs when key distribution is poor and load factor
is high

CPSC 327: Data Structures and Algorithms + Spring 2024 109

Open Addressing

linear probing — h(k) + c-i [c is often 1]
exhibits better memory locality than other options

suffers from clustering

keys that hash to the same index or adjacent indexes interfere with each
other

performance degrades quickly as n approaches N
sensitive to key distribution
uneven key distribution exacerbates the clustering problem

quadratic probing — h(k) + i?
suffers from secondary clustering
keys that hash to adjacent slots have adjacent probe sequences
may not find an empty slot even if one exists

double hashing — h(k) + i h'(k)
expected length of unsuccessful probe sequence is 1/(1-a) -
O(2) if table is not too full
o = n/N (load factor) -

Hashtables

What about other operations?

initialization
O(N) — size of the array used for the hashtable

traversal

in most cases O(n+N) for separate chaining — must examine
each index of table as well as all elements
can be worse e.g. worst case dynamic perfect hashing

O(N) for open addressing

find next larger/smaller key, find min/max key

full traversal is required because h(k) does not preserve original
ordering of keys

CPSC 327: Data Structures and Algorithms + Spring 2024 110

Questions

How does the type of thing (double, int, String, object,
etc) affect the running time?

it doesn't, as long as only simple steps are involved

e.g. assignment is a simple step regardless of type — primitive
types hold the value, object types hold the reference

e.g. copy is not necessarily a simple step — time to copy a
String or array depends on the length

typically the running time is expressed in terms of n, the
number of elements in the collection

there may be other factors which don’t depend on n but
which also aren’t exactly constants

e.g. hashing a String depends on the length of the string, not
the number of elements in the hashtable

keep those other quantities in the big-Oh unless you know they
are bounded

