Hashtables Recap

* a good hash function h(k) —

is efficient to compute

« ideally time is not dependent on |k| or n, but dependent on |k| is often
effectively ©(1)

spreads out the keys as much as possible
« equal probability of h(k) = each value 0..N-1

» even with a good hash function, \?| "|‘Z|‘3\4‘|5‘|("|‘7|f|?\
collisions (different keys hashing to Igimigingd
the same array index) are inevitable L o o

- two solutions . o -

separate chaining L

Open Addressing

open addressing \
0O 1 2 3 4 5 6 7 8 9
[34]5[s5]21] J2] 3]s [13]
CPSC 327: Data Structures and Algorithms « Spring 2024

Open Addressing

Deletion requires special handling.

 can re-insert all elements following the deleted element

if the load factor is low enough, this should only be a small
number of elements

» can mark empty slot as “deleted” — find continues on, *
insert can fill

drawback: probe sequence lengths are based on the largest the
collection has been, not the current size

solution: can periodically re-hash everything to clean up

CPSC 327: Data Structures and Algorithms + Spring 2024 107

* requiresn <N

If h(k) is full, follow a probe sequence to locate element /
find first empty slot for insertion.

¢ linear probing — h(k) + ci [c is often 1]
¢ should be relatively prime to N (not a problem if N is prime)
sequential probing when c=1

* quadratic probing — h(k) + i?
 double hashing — h(k) + i h'(k)

CPSC 327: Data Structures and Algorithms + Spring 2024 106

Perform the following operations on a hashtable of size

7 under the scenario listed, showing the contents of the
hashtable after each step: insert 35, insert 10, insert 18,
insert 24, insert 5, insert 11, delete 10, delete 24, delete
11, insert 74

» sequential probing, using hash function v%7

— linear probing — h(k) + c-i [c is often 1]
¢ should be relatively prime to N (not a problem if N is prime)
sequential probing when c=1

— quadratic probing — h(k) + i

— double hashing — h(k) + i h'(k)

CPSC 327: Data Structures and Algorithms + Spring 2024 108



Open Addressing

linear probing — h(k) + c-i [cis often 1]
exhibits better memory locality than other options

suffers from clustering

keys that hash to the same index or adjacent indexes interfere with each
other

performance degrades quickly as n approaches N
sensitive to key distribution
uneven key distribution exacerbates the clustering problem

quadratic probing — h(k) + i2
suffers from secondary clustering
keys that hash to adjacent slots have adjacent probe sequences
may not find an empty slot even if one exists

double hashing — h(k) + i h'(k)
expected length of unsuccessful probe sequence is 1/(1-a) -
O(2) if table is not too full

a =n/N (load factor) -

Hashtables

What about other operations?

initialization
O(N) — size of the array used for the hashtable

traversal

in most cases O(n+N) for separate chaining — must examine
each index of table as well as all elements
can be worse e.g. worst case dynamic perfect hashing

O(N) for open addressing
find next larger/smaller key, find min/max key

full traversal is required because h(k) does not preserve original
ordering of keys

CPSC 327: Data Structures and Algorithms + Spring 2024 m

Hashtables

If done properly, hashtables provide O(1) expected time for
find, insert, remove — once h(k) has been computed.

“done properly” means load factor isn't too high and is kept
bounded, and there is good distribution of hash values

Computing h(k) can take time.

e.g. for strings, computing h(k) = O(|k|) ... which reduces to O(1)
if |k| is bounded, but must be considered as O(|k|) otherwise

Worst-case behavior is O(n) for find and remove, unless
separate chaining + a fancier bucket implementation is used
(which has memory overhead).

worst case occurs when key distribution is poor and load factor
is high

CPSC 327: Data Structures and Algorithms + Spring 2024 110

Questions

How does the type of thing (double, int, String, object,
etc) affect the running time?

it doesn't, as long as only simple steps are involved

e.g. assignment is a simple step regardless of type — primitive
types hold the value, object types hold the reference

e.g. copy is not necessarily a simple step — time to copy a
String or array depends on the length

typically the running time is expressed in terms of n, the
number of elements in the collection

there may be other factors which don’t depend on n but
which also aren’t exactly constants

e.g. hashing a String depends on the length of the string, not
the number of elements in the hashtable

keep those other quantities in the big-Oh unless you know they
are bounded



