

CPSC 327: Data Structures and Algorithms • Spring 2024 105

Hashtables Recap

• a good hash function h(k) –
– is efficient to compute

• ideally time is not dependent on |k| or n, but dependent on |k| is often
effectively Θ(1)

– spreads out the keys as much as possible
• equal probability of h(k) = each value 0..N-1

• even with a good hash function,
collisions (different keys hashing to
the same array index) are inevitable

• two solutions
– separate chaining
– open addressing

CPSC 327: Data Structures and Algorithms • Spring 2024 106

Open Addressing

• requires n ≤ N

If h(k) is full, follow a probe sequence to locate element /
find first empty slot for insertion.

• linear probing – h(k) + c∙i [c is often 1]
– c should be relatively prime to N (not a problem if N is prime)
– sequential probing when c=1

• quadratic probing – h(k) + i2

• double hashing – h(k) + i h'(k)

CPSC 327: Data Structures and Algorithms • Spring 2024 107

Open Addressing

Deletion requires special handling.

• can re-insert all elements following the deleted element
– if the load factor is low enough, this should only be a small

number of elements

• can mark empty slot as “deleted” – find continues on,
insert can fill
– drawback: probe sequence lengths are based on the largest the

collection has been, not the current size
– solution: can periodically re-hash everything to clean up

CPSC 327: Data Structures and Algorithms • Spring 2024 108

 – linear probing – h(k) + c∙i [c is often 1]
 c should be relatively prime to N (not a problem if N is prime)
 sequential probing when c=1

 – quadratic probing – h(k) + i2

 – double hashing – h(k) + i h'(k)

CPSC 327: Data Structures and Algorithms • Spring 2024 109

Open Addressing

• linear probing – h(k) + c∙i [c is often 1]
– exhibits better memory locality than other options
– suffers from clustering

• keys that hash to the same index or adjacent indexes interfere with each
other

• performance degrades quickly as n approaches N

– sensitive to key distribution
• uneven key distribution exacerbates the clustering problem

• quadratic probing – h(k) + i2

– suffers from secondary clustering
• keys that hash to adjacent slots have adjacent probe sequences

– may not find an empty slot even if one exists

• double hashing – h(k) + i h'(k)
– expected length of unsuccessful probe sequence is 1/(1-α) →

O(1) if table is not too full
• α = n/N (load factor)

CPSC 327: Data Structures and Algorithms • Spring 2024 110

Hashtables

If done properly, hashtables provide O(1) expected time for
find, insert, remove – once h(k) has been computed.

– “done properly” means load factor isn't too high and is kept
bounded, and there is good distribution of hash values

Computing h(k) can take time.
– e.g. for strings, computing h(k) = O(|k|) … which reduces to O(1)

if |k| is bounded, but must be considered as O(|k|) otherwise

Worst-case behavior is O(n) for find and remove, unless
separate chaining + a fancier bucket implementation is used
(which has memory overhead).

– worst case occurs when key distribution is poor and load factor
is high

CPSC 327: Data Structures and Algorithms • Spring 2024 111

Hashtables

What about other operations?

• initialization
– O(N) – size of the array used for the hashtable

• traversal
– in most cases O(n+N) for separate chaining – must examine

each index of table as well as all elements
• can be worse e.g. worst case dynamic perfect hashing

– O(N) for open addressing

• find next larger/smaller key, find min/max key
– full traversal is required because h(k) does not preserve original

ordering of keys

CPSC 327: Data Structures and Algorithms • Spring 2024 112

Questions

How does the type of thing (double, int, String, object,
etc) affect the running time?

• it doesn’t, as long as only simple steps are involved
– e.g. assignment is a simple step regardless of type – primitive

types hold the value, object types hold the reference
– e.g. copy is not necessarily a simple step – time to copy a
String or array depends on the length

• typically the running time is expressed in terms of n, the
number of elements in the collection

• there may be other factors which don’t depend on n but
which also aren’t exactly constants
– e.g. hashing a String depends on the length of the string, not

the number of elements in the hashtable
– keep those other quantities in the big-Oh unless you know they

are bounded

