Data Structures Toolbox

Three categories of fundamental data structures and
algorithms —

 collections — List, Stack, Queue
implementations: array, linked list; sorted vs unsorted

 searching and lookup
sequential search, binary search

Map/Dictionary
« implementations: array, linked list; balanced BST (AVL, 2-4)
Set

* sorting
insertion sort, selection sort, mergesort, quicksort, ...
PriorityQueue

CPSC 327: Data Structures and Algorithms + Spring 2024 114

ADTSs — PriorityQueue

PriorityQueue maintain removal * insert(x,p) — insert elt x with priority p
order when there « findMin() or findMax() — find elt with min/max
are out-of-order priority
additions * deleteMin() or deleteMax() — remove (and
return) elt with min/max key

note: a PQ is typically either a min-PQ or a max-

PQ — it does not support both min and max
operations simultaneously

CPSC 327: Data Structures and Algorithms + Spring 2024 120

Sorting for Algorithm Design

option applications
sorting * when all elements to sort are known at one time
algorithm

PriorityQueue * for sorting in a dynamic environment, where the elements are
not all known at once
* e.g. greedy algorithms such as Dijkstra's algorithm and
Prim’s algorithm

Pragmatics —

= can handle increasing vs decreasing order, keys vs records, and
non-numerical data by abstracting a comparator from the sorting
algorithm

CPSC 327: Data Structures and Algorithms + Spring 2024 116

Priority Queue Implementation

We need some kind of collection to hold the keys/elements
in the PQ.

There are two basic collections
* array
¢ linked list

and two basic ways elements can be ordered within those
collections

* not sorted
» sorted

CPSC 327: Data Structures and Algorithms + Spring 2024 121

Priority Queue Implementation

. array -) linked list - linked list -
operation unsorted &Y sorted unsorted sorted
find min
insert
remove

min

CPSC 327: Data Structures and Algorithms + Spring 2024 122

Priority Queue Implementation

Can we do better?

Observations.

either insert or remove takes O(n) time
would be nice to reduce this!

there is an ordering of the elements (by priority)

sorted order is exploited in remove min but isn't helpful for insert
(binary search in array is offset by having to shift to make room)

Recall: balanced search trees
insert/remove is O(log n)

CPSC 327: Data Structures and Algorithms + Spring 2024 124

Priority Queue Implementation

. array - linked list - linked list -
Operation unso:yted array - sorted < orted sorted
: . O(1) - store : O(1) —store O(1) —at
el index of min O(1)=in'slot0 node with min head
. O(n) -
. O(1) —add O(n)-binary O(1)— add at .
insert . sequential
at end search + shift head search
O(n) — shift " O(n) —
remove f u)pdate (_)(1) —using upd:flte) i O(1) — at
min R circular array node head
Tradeoff: fast insert or fast remove, but not both.
Priority Queue Implementation
operation array - unsorted array - sorted balanced BST
findmin O = SO g(4) _in giot 0
insert O(1) — add at O(n) — binary

end search + shift

remove O(n) — shift + 0O(1) — using
min update min index circular array

CPSC 327: Data Structures and Algorithms + Spring 2024

Priority Queue Implementation

operation array - unsorted array - sorted balanced BST
7 ; 0O(1) — store ; 0O(1) — store min
find min R o [l O(1) —inslot 0 i
insert O(1) — add at O(n) — binary O(log n) — update

end search + shift tree structure

O(log n) — update
tree structure +
update min node

remove O(n) — shift + O(1) — using
min update min index circular array

Tradeoff: worst-case time reduced from O(n) to O(log n),
but have lost O(1) insert or remove.

CPSC 327: Data Structures and Algorithms + Spring 2024

Priority Queue Implementation

. array - array - balanced
operation L L BST hashtable
T O(1) — store O(1) —inslot O(1)—store O(1) - store
index of min 0 min node min elt
O(n) - o(1) -
. o()—add binary O0ogM - bl
insert update tree 5
at end search + insert +
; structure !
shift update min
O(log n) —
. O(N) -
remove +0u(gé;t: ?r']fltn O(1) — using g?r%ittirtéef hashtable
min] circular array f remove +
index update min d :
node update min

hashtables are good for lookup, but not for ordering

CPSC 327: Data Structures and Algorithms + Spring 2024

Priority Queue Implementation

array - array - balanced

operation - rted sorted BST hashtable
; . O(1) —store O(1)—inslot O(1)— store
(2] index of min 0 min node
O(n) -
: O(log n) —
" 0O(1) — add binary
insert at end search + uggiﬁl:::e
shift
O(log n) —
O(n) — shift e update tree
rem%ve + update min cg)r(c::lgl arl;srlrr;g structure +
index y update min
node

CPSC 327: Data Structures and Algorithms + Spring 2024

Priority Queue Implementation

Can we do better? operation

Observation. find min

O(log n) for insert, remove
min is due to updating the

remove
min

CPSC 327: Data Structures and Algorithms + Spring 2024

balanced BST

O(1) — store min
node

O(log n) — update
tree structure

O(log n) — update
tree structure +
update min node

Priority Queue Implementation

Can we do better?

Consider the essence of the problem —

don't necessarily need a full sorted order at any one point,
just the ability to get the min

adding an element is a small incremental change
only a specific element is removed (the min)

Strategy —
maintain a partial order of elements

stronger than unsorted (to improve on updating min) but not as
strong as sorted (to improve on insert performance)

CPSC 327: Data Structures and Algorithms + Spring 2024 130

Priority Queue Implementation

How to implement?

Observations.
balanced BST = binary tree +
ordering constraint to aid in search +
structural constraint to aid in efficiency

Can we do something along these lines for PQs?
but with a weaker ordering constraint since search only
needs to find the min

CPSC 327: Data Structures and Algorithms + Spring 2024

