

CPSC 327: Data Structures and Algorithms • Spring 2024 114

Data Structures Toolbox

Three categories of fundamental data structures and
algorithms –

• collections – List, Stack, Queue
– implementations: array, linked list; sorted vs unsorted

• searching and lookup
– sequential search, binary search
– Map/Dictionary

• implementations: array, linked list; balanced BST (AVL, 2-4)

– Set
–

• sorting
– insertion sort, selection sort, mergesort, quicksort, ...
– PriorityQueue

CPSC 327: Data Structures and Algorithms • Spring 2024 116

Sorting for Algorithm Design

option applications

sorting
algorithm

● when all elements to sort are known at one time

PriorityQueue ● for sorting in a dynamic environment, where the elements are
not all known at once
● e.g. greedy algorithms such as Dijkstra's algorithm and

Prim’s algorithm

Pragmatics –
• can handle increasing vs decreasing order, keys vs records, and

non-numerical data by abstracting a comparator from the sorting
algorithm

CPSC 327: Data Structures and Algorithms • Spring 2024 120

ADTs – PriorityQueue

PriorityQueue maintain removal
order when there
are out-of-order
additions

● insert(x,p) – insert elt x with priority p
● findMin() or findMax() – find elt with min/max

priority
● deleteMin() or deleteMax() – remove (and

return) elt with min/max key

note: a PQ is typically either a min-PQ or a max-
PQ – it does not support both min and max
operations simultaneously

CPSC 327: Data Structures and Algorithms • Spring 2024 121

Priority Queue Implementation

We need some kind of collection to hold the keys/elements
in the PQ.

There are two basic collections
• array
• linked list

and two basic ways elements can be ordered within those
collections
• not sorted
• sorted

CPSC 327: Data Structures and Algorithms • Spring 2024 122

Priority Queue Implementation

operation
array -

unsorted
array - sorted linked list -

unsorted
linked list -

sorted

find min

insert

remove
min

CPSC 327: Data Structures and Algorithms • Spring 2024 123

Priority Queue Implementation

operation
array -

unsorted
array - sorted

linked list -
unsorted

linked list -
sorted

find min
O(1) – store
index of min

O(1) – in slot 0
O(1) – store

node with min
O(1) – at

head

insert
O(1) – add

at end
O(n) – binary
search + shift

O(1) – add at
head

O(n) –
sequential

search

remove
min

O(n) – shift
+ update
min index

O(1) – using
circular array

O(n) –
update min

node

O(1) – at
head

Tradeoff: fast insert or fast remove, but not both.

CPSC 327: Data Structures and Algorithms • Spring 2024 124

Priority Queue Implementation

Can we do better?

Observations.
• either insert or remove takes O(n) time

– would be nice to reduce this!

• there is an ordering of the elements (by priority)
– sorted order is exploited in remove min but isn't helpful for insert

(binary search in array is offset by having to shift to make room)

Recall: balanced search trees
• insert/remove is O(log n)

CPSC 327: Data Structures and Algorithms • Spring 2024 125

Priority Queue Implementation

operation array - unsorted array - sorted balanced BST

find min O(1) – store
index of min

O(1) – in slot 0

insert
O(1) – add at

end
O(n) – binary
search + shift

remove
min

O(n) – shift +
update min index

O(1) – using
circular array

CPSC 327: Data Structures and Algorithms • Spring 2024 126

Priority Queue Implementation

operation array - unsorted array - sorted balanced BST

find min
O(1) – store
index of min O(1) – in slot 0

O(1) – store min
node

insert
O(1) – add at

end
O(n) – binary
search + shift

O(log n) – update
tree structure

remove
min

O(n) – shift +
update min index

O(1) – using
circular array

O(log n) – update
tree structure +

update min node

Tradeoff: worst-case time reduced from O(n) to O(log n),
but have lost O(1) insert or remove.

CPSC 327: Data Structures and Algorithms • Spring 2024 127

Priority Queue Implementation

operation
array -

unsorted
array -
sorted

balanced
BST

hashtable

find min
O(1) – store
index of min

O(1) – in slot
0

O(1) – store
min node

insert
O(1) – add

at end

O(n) –
binary

search +
shift

O(log n) –
update tree

structure

remove
min

O(n) – shift
+ update min

index

O(1) – using
circular array

O(log n) –
update tree
structure +
update min

node

CPSC 327: Data Structures and Algorithms • Spring 2024 128

Priority Queue Implementation

operation
array -

unsorted
array -
sorted

balanced
BST

hashtable

find min
O(1) – store
index of min

O(1) – in slot
0

O(1) – store
min node

O(1) – store
min elt

insert
O(1) – add

at end

O(n) –
binary

search +
shift

O(log n) –
update tree

structure

O(1) –
hashtable
insert +

update min

remove
min

O(n) – shift
+ update min

index

O(1) – using
circular array

O(log n) –
update tree
structure +
update min

node

O(N) –
hashtable
remove +

update min

• hashtables are good for lookup, but not for ordering

CPSC 327: Data Structures and Algorithms • Spring 2024 129

Priority Queue Implementation

operation balanced BST

find min
O(1) – store min

node

insert
O(log n) – update

tree structure

remove
min

O(log n) – update
tree structure +

update min node

Can we do better?

Observation.
• O(log n) for insert, remove

min is due to updating the
tree structure

CPSC 327: Data Structures and Algorithms • Spring 2024 130

Priority Queue Implementation

Can we do better?

Consider the essence of the problem –
• don't necessarily need a full sorted order at any one point,

just the ability to get the min
• adding an element is a small incremental change
• only a specific element is removed (the min)

Strategy –
• maintain a partial order of elements

– stronger than unsorted (to improve on updating min) but not as
strong as sorted (to improve on insert performance)

–

CPSC 327: Data Structures and Algorithms • Spring 2024 131

Priority Queue Implementation

How to implement?

Observations.
• balanced BST = binary tree +

 ordering constraint to aid in search +
 structural constraint to aid in efficiency

Can we do something along these lines for PQs?
• but with a weaker ordering constraint since search only

needs to find the min

