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Heaps

The idea: a heap is a
• binary tree +
• an ordering property to aid in searching +
• a structural property to aid in efficiency of implementation

Heap ordering property:  (min heap)
• every node's key is ≤ the keys of its children

– smallest element is at the root

Structural constraint:
• the tree is a complete binary tree

– the only empty spots are the rightmost elements in the last level

Note: the height of a complete binary tree is O(log n).
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Heaps

Strategy – 
• insert/remove as dictated by the structural property
• fix up the ordering property if broken by bubbling element 

down or up
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Heaps – FindMin 

The ordering property means that 
the min element is at the root.
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Heaps – Insertion

The structural property means                       
insertion can only occur in one place.

Strategy: insert in the only                       
possible place, then fix up the                 
ordering property if broken.

Thus:
• insert element in the first available slot
• “bubble up” until ordering property is restored

– element is only out of order with respect to parent
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Heaps – Insertion
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Heaps – RemoveMin

The structural property means                      
removal can only occur from one                        
place.

Strategy: swap element to delete                        
with the element in the only possible                     
position for removal, then fix up the                
ordering property if broken.

Thus:
• swap root with last slot
• remove element in last slot
• “bubble down” until ordering property is restored

– swap with smaller child
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Heaps – RemoveMin
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Heaps – Implementation

The standard implementation for binary trees is a linked 
structure.

– tree node stores element + pointers to parent, left child, right 
child

Running time and space – 
• find min is O(1)  – min element is at the root
• inserting and removing require knowing the location of the 

last element in the tree
– O(n) to find – don't know which child will have the last leaf
– solution – maintain a last pointer!  
– updating last after insertion/removal can require O(log n) time

• bubbling is already O(log n) so this is just a constant factor

• space is O(n)
– but there is overhead of three pointers per element (same as BST)
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Heaps – Implementation

Assessment –
• same big-Oh running time as balanced BST
• space is similar

– need parent pointers, though many balanced BST 
implementations have overhead beyond the binary tree structure

• implementation is simpler

Can we do better?
• reduce space overhead

– array eliminates overhead of pointers...if structural information 
can be encoded in the indices

• reduce time to build heap from n elements
– O(n log n) for n insert operations
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Heaps – Implementation

The alternative to a linked structure is an array.
• calculate parent/child index instead of storing

– root stored at slot 0
– left child of node with index i is in slot 2i+1, right child in slot 2i+2
– parent of node with index j is in slot (j-1)/2

Running time and space – 
• find min is O(1)  – min element is in slot 0
• inserting and removing require knowing the location of the 

last element in the tree
– at size-1  (i.e. maintain a last index)
– updating this value after insertion/removal takes only O(1) time

• just increment or decrement

• space is O(n)
– only have to store elements (no additional pointers)
– complete binary tree fills consecutive slots – no gaps
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Heaps – Implementation

Arrays are the traditional implementation for heaps.
– same big-Oh as linked structure, but avoids space overhead of 

parent/child pointers

Running time:
• insert – O(log n)

– O(1) to put element in array, update last
– O(log n) to bubble up

• remove min – O(log n)
– O(1) to swap with last, remove last, update last
– O(log n) to bubble down

• find min – O(1)
– min element is at root (index 0)
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Heaps – Implementation

We didn't improve the big-Oh over the balanced BST 
implementation for PQs.
But –

• reduced storage overhead (no parent, child pointers)

• reduced difficulty of implementation
– array + bubble up, bubble down vs. linked structure + balanced 

BST operations
– traded maintaining 'min' reference for 

incrementing/decrementing 'last' index

• reduced constant factors
– traded O(log n) maintenance of 'min' reference for O(1) 

maintenance of 'last' index
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Building a Heap

How to build a heap?
• repeatedly insert each element                = Θ(n log n) ∑

i=0

n−1

log(i )
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Building a Heap

Or...if you already have an array of elements...
• for any n elements in an array, the heap order property is 

at most broken only for the first n/2 elements

Heapify idea.
• for each index n/2 down to 0, bubble down that element

Running time.
• bubble down takes O(h) time

– n/2 elements are leaves (already in place – no change)
– n/4 elements are one level above leaf (at most 1 swap)
– n/8 elements are two levels above leaf (at most 2 swaps)
– …

• =                       = n Θ(1) = Θ(n)∑
i=1

log n

(i−1)(
n
2i

)


