

CPSC 327: Data Structures and Algorithms • Spring 2024 133

Heaps

The idea: a heap is a
• binary tree +
• an ordering property to aid in searching +
• a structural property to aid in efficiency of implementation

Heap ordering property: (min heap)
• every node's key is ≤ the keys of its children

– smallest element is at the root

Structural constraint:
• the tree is a complete binary tree

– the only empty spots are the rightmost elements in the last level

Note: the height of a complete binary tree is O(log n).

CPSC 327: Data Structures and Algorithms • Spring 2024 134

Heaps

Strategy –
• insert/remove as dictated by the structural property
• fix up the ordering property if broken by bubbling element

down or up

CPSC 327: Data Structures and Algorithms • Spring 2024 135

Heaps – FindMin

The ordering property means that
the min element is at the root.

10

15 20

2530 35 80

50 45

CPSC 327: Data Structures and Algorithms • Spring 2024 136

Heaps – Insertion

The structural property means
insertion can only occur in one place.

Strategy: insert in the only
possible place, then fix up the
ordering property if broken.

Thus:
• insert element in the first available slot
• “bubble up” until ordering property is restored

– element is only out of order with respect to parent

10

15 20

2530 35 80

50 45 5

CPSC 327: Data Structures and Algorithms • Spring 2024 137

Heaps – Insertion

10

15 20

2530 35 80

50 45 5

10

15 20

530 35 80

50 45 25

10

5 20

1530 35 80

50 45 25

5

10 20

1530 35 80

50 45 25

CPSC 327: Data Structures and Algorithms • Spring 2024 138

Heaps – RemoveMin

The structural property means
removal can only occur from one
place.

Strategy: swap element to delete
with the element in the only possible
position for removal, then fix up the
ordering property if broken.

Thus:
• swap root with last slot
• remove element in last slot
• “bubble down” until ordering property is restored

– swap with smaller child

10

15 20

2530 35 80

50 45

CPSC 327: Data Structures and Algorithms • Spring 2024 139

Heaps – RemoveMin

10

15 20

2530 35 80

50 45

45

15 20

2530 35 80

50

15

45 20

2530 35 80

50

15

25 20

4530 35 80

50

CPSC 327: Data Structures and Algorithms • Spring 2024 140

Heaps – Implementation

The standard implementation for binary trees is a linked
structure.

– tree node stores element + pointers to parent, left child, right
child

Running time and space –
• find min is O(1) – min element is at the root
• inserting and removing require knowing the location of the

last element in the tree
– O(n) to find – don't know which child will have the last leaf
– solution – maintain a last pointer!
– updating last after insertion/removal can require O(log n) time

• bubbling is already O(log n) so this is just a constant factor

• space is O(n)
– but there is overhead of three pointers per element (same as BST)

CPSC 327: Data Structures and Algorithms • Spring 2024 141

Heaps – Implementation

Assessment –
• same big-Oh running time as balanced BST
• space is similar

– need parent pointers, though many balanced BST
implementations have overhead beyond the binary tree structure

• implementation is simpler

Can we do better?
• reduce space overhead

– array eliminates overhead of pointers...if structural information
can be encoded in the indices

• reduce time to build heap from n elements
– O(n log n) for n insert operations

CPSC 327: Data Structures and Algorithms • Spring 2024 142

Heaps – Implementation

The alternative to a linked structure is an array.
• calculate parent/child index instead of storing

– root stored at slot 0
– left child of node with index i is in slot 2i+1, right child in slot 2i+2
– parent of node with index j is in slot (j-1)/2

Running time and space –
• find min is O(1) – min element is in slot 0
• inserting and removing require knowing the location of the

last element in the tree
– at size-1 (i.e. maintain a last index)
– updating this value after insertion/removal takes only O(1) time

• just increment or decrement

• space is O(n)
– only have to store elements (no additional pointers)
– complete binary tree fills consecutive slots – no gaps

CPSC 327: Data Structures and Algorithms • Spring 2024 143

Heaps – Implementation

Arrays are the traditional implementation for heaps.
– same big-Oh as linked structure, but avoids space overhead of

parent/child pointers

Running time:
• insert – O(log n)

– O(1) to put element in array, update last
– O(log n) to bubble up

• remove min – O(log n)
– O(1) to swap with last, remove last, update last
– O(log n) to bubble down

• find min – O(1)
– min element is at root (index 0)

CPSC 327: Data Structures and Algorithms • Spring 2024 144

Heaps – Implementation

We didn't improve the big-Oh over the balanced BST
implementation for PQs.
But –

• reduced storage overhead (no parent, child pointers)

• reduced difficulty of implementation
– array + bubble up, bubble down vs. linked structure + balanced

BST operations
– traded maintaining 'min' reference for

incrementing/decrementing 'last' index

• reduced constant factors
– traded O(log n) maintenance of 'min' reference for O(1)

maintenance of 'last' index

CPSC 327: Data Structures and Algorithms • Spring 2024 145

Building a Heap

How to build a heap?
• repeatedly insert each element = Θ(n log n) ∑

i=0

n−1

log(i)

CPSC 327: Data Structures and Algorithms • Spring 2024 146

Building a Heap

Or...if you already have an array of elements...
• for any n elements in an array, the heap order property is

at most broken only for the first n/2 elements

Heapify idea.
• for each index n/2 down to 0, bubble down that element

Running time.
• bubble down takes O(h) time

– n/2 elements are leaves (already in place – no change)
– n/4 elements are one level above leaf (at most 1 swap)
– n/8 elements are two levels above leaf (at most 2 swaps)
– …

• = = n Θ(1) = Θ(n)∑
i=1

log n

(i−1)(
n
2i

)

