Heaps

The idea: a heap is a

- binary tree +
- an ordering property to aid in searching +
- a structural property to aid in efficiency of implementation

Heap ordering property: (min heap)

- every node's key is \leq the keys of its children smallest element is at the root

Structural constraint:

- the tree is a complete binary tree
- the only empty spots are the rightmost elements in the last level

Note: the height of a complete binary tree is $\mathrm{O}(\log n)$.
CPSC 327: Data Structures and Algorithms • Spring 2024

Heaps - FindMin

The ordering property means that the min element is at the root.

Heaps

$$
\begin{aligned}
& \text { Insert the elements } 42,50,40,60,30,80 \text { into an } \\
& \text { initially-empty max heap. Draw the state of the heap } \\
& \text { after each insertion. }
\end{aligned}
$$

Carry out four "remove max" operations, starting with
the heap resulting from the previous question. Draw
the state of the heap after each removal.

Strategy -

- insert/remove as dictated by the structural property
- fix up the ordering property if broken by bubbling element down or up

Heaps - Insertion

The structural property means insertion can only occur in one place.

Strategy: insert in the only possible place, then fix up the ordering property if broken.

Thus:

- insert element in the first available slot
- "bubble up" until ordering property is restored
element is only out of order with respect to parent

Heaps - RemoveMin

Heaps - RemoveMin

The structural property means removal can only occur from one place.

Strategy: swap element to delete with the element in the only possible position for removal, then fix up the ordering property if broken.

Thus:

- swap root with last slot
- remove element in last slot
- "bubble down" until ordering property is restored - swap with smaller child

CPSC 327: Data Structures and Aggorithms - Sping 2024

Heaps - Implementation

The standard implementation for binary trees is a linked structure.
tree node stores element + pointers to parent, left child, right child

Running time and space -

- find min is $O(1)$ - min element is at the root
- inserting and removing require knowing the location of the last element in the tree
- O(n) to find - don't know which child will have the last leaf
- solution - maintain a last pointer!
- updating last after insertion/removal can require $O(\log n)$ time
- bubbling is already $\mathrm{O}(\log \mathrm{n})$ so this is just a constant factor
- space is $\mathrm{O}(\mathrm{n})$
- but there is overhead of three pointers per element (same as BST)

CPSC 327: Data Sturcurues and Agorithms - Spring 2024

Heaps - Implementation

Assessment -

- same big-Oh running time as balanced BST
- space is similar
need parent pointers, though many balanced BST
implementations have overhead beyond the binary tree structure
- implementation is simpler

Can we do better?

- reduce space overhead
- array eliminates overhead of pointers...if structural information can be encoded in the indices
- reduce time to build heap from n elements $O(n \log n)$ for n insert operations

CPSC 327: Data Structures and Algoritms - Sping 2024

Heaps - Implementation

Arrays are the traditional implementation for heaps.
same big-Oh as linked structure, but avoids space overhead of parent/child pointers

Running time:

- insert - O(log n)

O(1) to put element in array, update last
$\mathrm{O}(\log \mathrm{n})$ to bubble up

- remove min - O(log n)

O(1) to swap with last, remove last, update last
O($\log n$) to bubble down

- find min - O(1)
- min element is at root (index 0)

Heaps - Implementation

The alternative to a linked structure is an array.

- calculate parent/child index instead of storing root stored at slot 0
- left child of node with index i is in slot $2 i+1$, right child in slot $2 i+2$ - parent of node with index j is in slot $(\mathrm{j}-1) / 2$

Running time and space -

- find \min is $O(1)$ - min element is in slot 0
- inserting and removing require knowing the location of the last element in the tree
at size-1 (i.e. maintain a last index)
- updating this value after insertion/removal takes only O(1) time - just increment or decrement

- space is $O(n)$

- only have to store elements (no additional pointers)
- complete binary tree fills consecutive slots - no gaps

Heaps - Implementation

We didn't improve the big-Oh over the balanced BST implementation for PQs.
But -

- reduced storage overhead (no parent, child pointers)
- reduced difficulty of implementation
array + bubble up, bubble down vs. linked structure + balanced BST operations
- traded maintaining 'min' reference for incrementing/decrementing 'last' index
- reduced constant factors
traded $\mathrm{O}(\log \mathrm{n})$ maintenance of 'min' reference for $\mathrm{O}(1)$ maintenance of 'last' index

Building a Heap
How to build a heap? - repeatedly insert each element $\sum_{i=0}^{n-1} \log (i)=\Theta(n \log n)$

Building a Heap

Or...if you already have an array of elements...

- for any n elements in an array, the heap order property is at most broken only for the first $\mathrm{n} / 2$ elements

Heapify idea.

- for each index $\mathrm{n} / 2$ down to 0 , bubble down that element

Running time.

- bubble down takes $\mathrm{O}(\mathrm{h})$ time
- $\mathrm{n} / 2$ elements are leaves (already in place - no change)
- $\mathrm{n} / 4$ elements are one level above leaf (at most 1 swap)
n/8 elements are two levels above leaf (at most 2 swaps)
- $=\sum_{i=1}^{\log n}(i-1)\left(\frac{n}{2^{i}}\right)=n \Theta(1)=\Theta(n)$

CPSC 327: Data Strucurues and Agorithms • Sping 2024

