

CPSC 327: Data Structures and Algorithms • Spring 2024 149

Recap – ADTs

We've considered major categories of ADTs for collections,
characterized by the access they provide for their elements,
and commons ADTs within those categories

• containers – based on position, not element value
– Sequence/List – linear structure with access at any position
– Stack – insert/remove at the same end (top)
– Queue – insert/remove at opposite ends (front, back)

• dictionary – based on element's key (lookup)
– Dictionary/Map – find(k), insert(k,v), remove(k)
– OrderedDictionary – also max/min, successor(k), predecessor(k)

• priority queue – ordered, based on element's key
– PriorityQueue – insert(x), findMin (or max), removeMin (or max)

CPSC 327: Data Structures and Algorithms • Spring 2024 150

Recap – Data Structures

We've seen some useful data structures – arrays, linked
lists, binary trees, general trees.

We've seen some clever ways to use and adapt basic data
structures to achieve efficient implementations of ADTs.

– sorted array/linked list (vs. unsorted)
– circular arrays
– linked list with tail pointers
– array-based implementation of binary trees
– search trees (binary, multiway) – trees with ordering property for

elements
– balanced search trees (AVL, 2-4) – search trees with structural

property to maintain log n height
– hashtables – arrays with clever conversion of key to array index
– heaps – trees with ordering + structural properties

CPSC 327: Data Structures and Algorithms • Spring 2024 151

Specialized Data Structures

Be aware that there's more out there.

• other implementations
– dictionaries: splay trees, red-black trees, b-trees, skip lists
– priority queues: bounded height PQs, Fibonacci heaps, pairing

heaps

• string data structures
– e.g. suffix trees/arrays for pattern matching
– e.g. prefix trees

• geometric data structures
– e.g. BSP, kd-trees for fast searching in space
–

• graph data structures
•

• set data structures

CPSC 327: Data Structures and Algorithms • Spring 2024 152

A Practical Guide to Data Structures and Algorithms
using Java, Goldman and Goldman

The Algorithm Design Manual, Skiena

CPSC 327: Data Structures and Algorithms • Spring 2024 153

Choosing Data Structures

“Building algorithms around data structures such as
dictionaries and priority queues leads to both clean
structure and good performance.” [Skiena, ADM]

– first design the ADT – identify how your collection is accessed
and what operations are needed

– then choose an implementation that delivers the necessary
performance

– isolate the implementation of the data structure from the rest of
the code

• in Java, this means writing a class to implement the ADT with methods for
the ADT operations

CPSC 327: Data Structures and Algorithms • Spring 2024 154

Choosing Implementations

Consider the characteristics of your task –

• dictionaries

– how many items? is the size known in advance?
• if small, simplicity of implementation is most important
• if very large, running out of memory is an issue

– what are the relative frequencies of insert, delete, find
operations?

• static (no modifications after construction) and semi-dynamic structures
(insertion but no deletion) can be simpler than fully dynamic

– is the access pattern for keys uniform and random?
• in some data structures, non-uniform distributions lead to worst-case

performance while others can take advantage of temporal locality

– do individual operations need to be fast, or just minimize the total
amount of work of the whole program?

• focus on achieving good worst case performance vs amortized or
expected performance

CPSC 327: Data Structures and Algorithms • Spring 2024 155

Implementation Choices for Dictionaries

• for small data sets, unsorted arrays are simple and have
better cache performance than linked lists

• for moderate-to-large data sets, hashtables are likely best
• for very large data sets where there isn’t enough room in

memory, use B-trees

• self-organizing lists are often better than sorted or unsorted lists in
practice
– many applications have uneven access frequencies and locality of reference

• sorted arrays OK if not too many insertions or deletions
• the inability to use binary search makes sorted linked lists often not

worth it

• for balanced search trees, the best choice is likely the one with the
best implementation

• skip lists are easier than balanced search trees to implement and
analyze

CPSC 327: Data Structures and Algorithms • Spring 2024 156

Implementation Choices for Dictionaries

• creating good hashtables

– open addressing has better cache performance, but overall
performance decreases quickly with higher load factors

– with open addressing, N should be 30-50% larger than the
maximum number of elements expected at once

• N should be prime

– use a good hash function + an efficient implementation

• gather stats on the distribution of keys to see how well the hash function
performs

CPSC 327: Data Structures and Algorithms • Spring 2024 157

Choosing Implementations

Consider the characteristics of your task –

• priority queues

– max size? is it known in advance?
• preallocating the necessary space saves having to grow a container

– are the key values limited?

– what operations are needed?
• if no insertion after construction, no need for PQ – just sort
• other operations: searching for or removing arbitrary elements vs only the

min/max

– can priorities of elements already in the PQ be changed?
• implies needing to retrieve elements by key, not just the min/max ones

CPSC 327: Data Structures and Algorithms • Spring 2024 158

Implementation Choices for Priority Queues

• sorted array or list when there aren’t any insertions
– very efficient for identifying and removing the smallest element

• binary heaps when the max number of elements is known
– fixed array size can be mitigated with dynamic arrays

• bounded-height priority queues when there is a small,
discrete range of keys

• BSTs when other dictionary operations are needed, or
when there is an unbounded key range and the max PQ
size isn’t known in advance

• Fibonacci and pairing heaps improve the efficiency of
decrease key operations
– effective for large computations if implemented and used well

CPSC 327: Data Structures and Algorithms • Spring 2024 160

Designing Your Own Data Structures

• know what kinds of structures lead to what kinds of
running times
– can use that knowledge to guide/constrain thinking
– O(n log n) or better is typically required in practice for large data

sets

• strategies for rolling your own data structures
– store more information for faster access – as long as it can be

kept up-to-date efficiently
– add additional properties to speed desired operations – as long

as they can be maintained efficiently

• knowledge of complexity is useful
– for NP-complete problems, look for heuristics rather than optimal

solutions

CPSC 327: Data Structures and Algorithms • Spring 2024 161

Designing Data Structures

“...in practice, it is more important to avoid using a bad data
structure than to identify the single best option available.”

[Skiena, ADM]

– ask “do we need to do better?” before “can we do better?”

CPSC 327: Data Structures and Algorithms • Spring 2024 162

Design a data structure to efficiently support –
• insert(k) – insert element with key k
• findMin() – find element with smallest key
• removeMin() – remove element with smallest key
• decreaseKey(e,k) – decrease element e's key to k

