

Graphs and
Graph Algorithms

CPSC 327: Data Structures and Algorithms • Spring 2024 2

Graphs

For storing relationships between pairs of things.

Formally, a graph G consists of a set of vertices
 V = { v1, v2, v3, … }
and a set of edges that connect pairs of vertices
 E = { (u,v) | u, v in V }.

n is often used to denote the number of vertices (|V|).
m is often used to denote the number of edges (|E|).

vertices
represent
the things

edges
represent the
relationships

CPSC 327: Data Structures and Algorithms • Spring 2024 3

Some Graph Terminology

• the vertices u, v of an edge (u,v) are the endpoints of the
edge
– an edge is incident on its endpoints

• the degree of a vertex is the number of incident edges
– for directed graphs, the indegree is the number of incoming

edges and the outdegree is the number of outgoing edges

• a path is a route from one vertex to another, following
edges (in the proper direction, if the edges are directed)

• a cycle is a path that starts and ends at the same vertex

an undirected graph with
each vertex labeled with
its degree

CPSC 327: Data Structures and Algorithms • Spring 2024 4

Graphs

Graphs are extremely important because lots of things can
be modeled as graphs, and lots of problems reduce to
common graph algorithms.

CPSC 327: Data Structures and Algorithms • Spring 2024 5

Graphs

• driving directions (how to travel) from A to B shortest →
(distance, time) path from A to B

• can you get from A to B? reachability→ CPSC 327: Data Structures and Algorithms • Spring 2024 6

Graphs

• what species are critical?
 cut vertices→

• what species would be
affected by the removal of
another? reachability→

• most commonly thanked? high →
indegree

CPSC 327: Data Structures and Algorithms • Spring 2024 7

Graphs

• analyzing song lyrics and text –
connecting consecutive words

CPSC 327: Data Structures and Algorithms • Spring 2024 8

Flavors of Graphs

• undirected vs directed
– does having edge (u,v) imply that edge (v,u) also exists?
– a mixed graph has both directed and undirected edges

• connected vs not connected
– is there a path between every pair of vertices?
– minimum number of edges in a connected graph is n-1

• simple vs not simple (self loops, multiedges)
– a self loop is an edge (v,v)
– multiedges occur when there are multiple edges between a pair

of vertices (u,v)
– maximum number of edges in a simple graph is n(n-1)/2

(undirected) or n(n-1) (directed) = Θ(n2)

• sparse vs dense
– typically “sparse” means O(n) edges while “dense” means O(n2)

CPSC 327: Data Structures and Algorithms • Spring 2024 9

Flavors of Graphs

• cyclic vs acyclic
– an undirected acyclic graph is a tree
– a tree has exactly n-1 edges

• weighted vs unweighted
– associate a value (weight or cost) with each edge
– (less common) associate a value with each vertex

CPSC 327: Data Structures and Algorithms • Spring 2024 10

Flavors of Graphs

• labeled vs unlabeled
– do vertices have unique labels to distinguish them from one

another?

• embedded vs topological
– do the vertices and edges have geometric positions, or are

elements of the graph structure (such as edges or edge weights)
derived from the geometry?

• e.g. TSP over points in the plane or grids of points where edges connect
neighboring points

– an embedding also means there is a particular order to the
edges incident on each vertex

• implicit vs explicit
– is the graph built only as used, or fully constructed in advance?
– typically don’t even create nodes and edges for implicit graphs –

have function to compute incident edges

CPSC 327: Data Structures and Algorithms • Spring 2024 11

Warmup

• directed or undirected?
• weighted or unweighted?
• simple or not simple?

– self loops or no self loops?
– multiedges or no multiedges?

• sparse or dense?
• cyclic or acyclic?

vertices correspond to valid
configurations (4-digit numbers)

edges connect two vertices if one
button press goes from the first
configuration tot he other

solution is path with fewest edges from
starting config to target config

• embedded or
topological?

• implicit or explicit?
• labeled or unlabeled?

CPSC 327: Data Structures and Algorithms • Spring 2024 12

The Importance of the Flavor

Particular properties of the graph can affect –

• the choice of implementation for the Graph ADT

• the applicable algorithms
– some are only meaningful for certain kinds of graphs
– some exploit certain properties of the graph to achieve greater

efficiency

CPSC 327: Data Structures and Algorithms • Spring 2024 13

Graph ADT

• not generally provided as a data structure unless you are
working with a specialized data structures or graph library
– e.g. Java Collections does not include Graph
– graph libraries often include useful graph algorithms as well as

the data structure

CPSC 327: Data Structures and Algorithms • Spring 2024 14

Graph ADT

What kinds of operations do we need?

• access graph structure
• modify graph structure – insert, remove

CPSC 327: Data Structures and Algorithms • Spring 2024 15

Graph ADT

• numVertices(), numEdges() – get the number of
vertices/edges in the graph

• vertices(), edges() – get an iterator of the vertices/edges

• aVertex() – get a vertex of the graph

• degree(v) – get the degree of vertex v

• adjacentVertices(v) – get an iterator of the vertices adjacent to v

• incidentEdges(v) – get an iterator of the edges incident on v

• endVertices(e) – get the two end vertices of an edge

• opposite(v,e) – get the end vertex of e that isn't v

• areAdjacent(v,w) – are vertices v,w adjacent to each other? (i.e.
there is an edge connecting them)

CPSC 327: Data Structures and Algorithms • Spring 2024 16

Graph ADT (for directed graphs)

• directedEdges(), undirectedEdges() – get iterator of
directed/undirected edges

• destination(e), source(e) – get the destination/source of edge e

• isDirected(e) – is edge e directed?

• inDegree(v), outDegree(v) – get the in-degree/out-degree of
vertex v

• inIncidentEdges(v), outIncidentEdges(v) – get iterator of the
incoming/outgoing edges of v

• isAdjacentVertices(v), outAdjacentVertices(v) – get iterator
of vertices adjacent to v along incoming/outgoing edges of v

CPSC 327: Data Structures and Algorithms • Spring 2024 17

Graph ADT (for modifying the structure)

• insertEdge(v,w,o) – insert undirected edge connecting vertices
v, w, storing object o with the edge

• insertDirectedEdge(v,w,o) – insert directed edge from vertex v
to vertex w, storing object o with the edge

• insertVertex(o) – insert a new isolated vertex, storing the object
o with the vertex

• removeVertex(v) – remove vertex v and all of its incident edges

• removeEdge(e) – remove edge e (no vertices are removed, even if
the removal creates an isolated vertex)

• makeUndirected(e) – make edge e undirected

• reverseDirection(e) – reverse the direction of the undirected
edge e

• setDirectionFrom(e,v), setDirectionTo(e,v) – make edge e
directed away from/towards vertex v

CPSC 327: Data Structures and Algorithms • Spring 2024 18

Implementing the Graph ADT

What information do we need to capture?

• structural information – edges connecting vertices

• data – vertex labels, edge/vertex weights, …
– i.e. the object o associated with each Vertex and Edge

Building blocks –

• lookup is fast in arrays and if the info needed is stored
directly; searching or computing is slow
– e.g. storing a vertex's degree is faster than counting its incident

edges

• storing info takes space and requires updates (slow)
when the graph changes

CPSC 327: Data Structures and Algorithms • Spring 2024 19

Standard Implementations

Adjacency matrix –
• a 2D array M where M[i][j] = 1 if edge (i,j) exists and 0

otherwise

Adjacency list –
• each vertex stores a list of incident edges

Implementing Graph ADT –
• how is vertex and edge info stored? (the objects o)
• how do we keep track of all of the vertices? edges?
• for adjacency matrix, how do we manage going from a

Vertex to the corresponding index?

CPSC 327: Data Structures and Algorithms • Spring 2024 20

Graph ADT Implementations

adjacency matrix

graph stores
• a list of vertices
• a list of edges
• 2D array, indexed by vertex key

vertex stores
• the associated object
• degree of the vertex
• distinct integer key in the range 0..n-1

edge stores
• the associated object
• endpoint vertices

array stores
• A[i][j] holds the edge from vertex with

index i to vertex with index j (null if no
edge)

adjacency list

graph stores
• a list of vertices
• a list of edges

vertex stores
• the associated object
• degree of the vertex
• list of incident edges

edge stores
• the associated object
• endpoint vertices

CPSC 327: Data Structures and Algorithms • Spring 2024 22

Implementing the Graph ADT
adjacency list adjacency matrix

numVertices(),
numEdges()

vertices(), edges()

aVertex()

degree(v)

adjacentVertices(v)

incidentEdges(v)

endVertices(e)

opposite(v,e)

areAdjacent(v,w)

insertEdge(v,w,o)

insertVertex(o)

removeVertex(v)

removeEdge(e)

space
CPSC 327: Data Structures and Algorithms • Spring 2024 23

Adjacency Matrix Implementation

graph stores
• a list of vertices
• a list of edges
• 2D array, indexed by vertex key

vertex stores
• the associated object
• degree of the vertex
• reference to the vertex's location in the list of vertices
• distinct integer key in the range 0..n-1

edge stores
• the associated object
• endpoint vertices
• reference to the edge's location in the list of edges

array stores
• A[i][j] holds the edge from vertex with index i to vertex with index j (null

if no edge)

doubly-linked list allows for O(1)
removal given reference to list node

CPSC 327: Data Structures and Algorithms • Spring 2024 24

Adjacency List Implementation

graph stores
• a list of vertices
• a list of edges

vertex stores
• the associated object
• degree of the vertex
• reference to the vertex's location in the list of vertices
• list of incident edges

edge stores
• the associated object
• endpoint vertices
• reference to the edge's location in the list of edges
• references to the edge's location in the incidence lists for its

endpoint vertices

doubly-linked list allows for O(1)
removal given reference to list node

doubly-linked list allows for O(1)
removal given reference to list node

