

CPSC 327: Data Structures and Algorithms • Spring 2024 24

Adjacency Matrix Implementation

graph stores
• a list of vertices
• a list of edges
• 2D array, indexed by vertex key

vertex stores
• the associated object
• degree of the vertex
• reference to the vertex's location in the list of vertices
• distinct integer key in the range 0..n-1

edge stores
• the associated object
• endpoint vertices
• reference to the edge's location in the list of edges

array stores
• A[i][j] holds the edge from vertex with index i to vertex with index j (null

if no edge)

doubly-linked list allows for O(1)
removal given reference to list node

CPSC 327: Data Structures and Algorithms • Spring 2024 25

Adjacency List Implementation

graph stores
• a list of vertices
• a list of edges

vertex stores
• the associated object
• degree of the vertex
• reference to the vertex's location in the list of vertices
• list of incident edges

edge stores
• the associated object
• endpoint vertices
• reference to the edge's location in the list of edges
• references to the edge's location in the incidence lists for its

endpoint vertices

doubly-linked list allows for O(1)
removal given reference to list node

doubly-linked list allows for O(1)
removal given reference to list node

CPSC 327: Data Structures and Algorithms • Spring 2024 26

Implementing the Graph ADT
adjacency list adjacency matrix

numVertices(),
numEdges()

O(1) O(1)

vertices(), edges() O(1) per element O(1) per element

aVertex() O(1) O(1)

degree(v) O(1) O(1)

adjacentVertices(v) O(1) per element O(n) – to scan row/column of array

incidentEdges(v) O(1) per element O(n) – to scan row/column of array

endVertices(e) O(1) O(1)

opposite(v,e) O(1) O(1)

areAdjacent(v,w)
O(min(deg(v,w))) –

search list for vertex
with smaller degree

O(1)

insertEdge(v,w,o) O(1) O(1)

insertVertex(o) O(1)
O(n) – to initialize row/col of array

O(n2) – if array needs to grow

removeVertex(v) O(deg(v)) – to remove
each incident edge

O(1) – with clever bookkeeping (and
wasted space)

O(n2) – shifting in array

removeEdge(e) O(1) O(1)

space O(n+m) O(n2)
CPSC 327: Data Structures and Algorithms • Spring 2024 27

Comparison

Adjacency matrix –

• very time-efficient for isAdjacent – O(1)
• very space-inefficient for sparse graphs
• time-inefficient for traversing edges incident on a vertex –

O(n)
• time-inefficient for insert/remove vertex

Adjacency list –

• space-efficient except for the most dense graphs
• time-efficient for traversing edges incident on a

vertex – O(deg)
• isAdjacent is O(deg) rather than O(1)

