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Entry and Exit Times

Recording entry and exit times –
• early process (before incident edges)
    time = time+1                                        
    entry[v] = time

• late process (after incident edges)
    time = time+1                                        
    exit[v] = time

Properties –
• the [entry,exit] interval for v is properly nested within 

interval for ancestor u
– entry times for ancestors of v are smaller than for v, while exit 

times are larger

• the number of descendants of v is (exit[v]-entry[v])/2
– the [entry,exit] interval for all of the descendants is properly nested 

within the interval for v – so there is both an entry and an exit for each
– time is incremented once for each entry and once for each exit
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DFS

dfs(G,s)
  for each vertex u in V-{s} do
    state[u] = “undiscovered”
    prev[u] = null
  state[s] = “discovered”
  prev[s] = null
  dfshelper(G,s)

dfshelper(G,u)
  process vertex u (early)
  for each edge (u,v) in G.incidentEdges(u) do
    if state[v] = “undiscovered” then
      process edge (u,v)
      state[v] = “discovered”
      prev[v] = u
      dfshelper(G,v)
  state[u] = “processed”
  process vertex u (late)
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Applications of DFS – Undirected Graphs

• articulation (cut) vertices
– a cut vertex is a vertex whose removal 

disconnects the graph (single point of failure)
– a biconnected graph has no cut vertices (at 

least two vertices must be removed to disconnect)

– observation – if a back edge connects a 
descendant of v with an ancestor of v, v is not 
a cut vertex

• because the back edge forms a cycle

– idea – for each vertex, determine its earliest 
reachable ancestor in the DFS search tree

• number vertices in the order first encountered by 
DFS (entry time)

• earliest reachable ancestor = lowest-numbered of v, 
the vertices adjacent to v via back edges, and the 
earliest reachable ancestors of children of v

• v is a cut vertex if
– the earliest reachable ancestor of at least one of v's 

children is the child itself or v
– if v is the root, it must also have two or more children

cut vertices marked in 
red

DFS tree – DFS entry 
order in black, earliest 
reachable ancestor in red
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Applications of DFS – Undirected Graphs

• bridges (cut edges) – edges whose removal disconnects 
the graph
– edge (u,v) is a cut edge if it is a tree edge and there's no back 

edge from v or a descendant of v to u or an ancestor of u

cut edges marked in red DFS tree
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Applications of DFS – Directed Graphs

• topological sort – order the vertices of G so                 
that all edges are oriented from an earlier vertex               
to a later one

– possible if and only if G is a DAG (directed acyclic graph)

– algorithm – the ordering is the reverse of the order in which 
vertex processing is completed (exit time) when dfs is started 
from a vertex s where indeg(s) = 0  (i.e. s has no incoming edges)
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Topological Sort

time = 0
for each vertex v in V do
  if G.inDegree(v) = 0
    dfs(G,v)

dfs(G,s)
  for each vertex u in V-{s} do
    state[u] = “undiscovered”
    prev[u] = null
  state[s] = “discovered”
  prev[s] = null
  dfshelper(G,s)

dfshelper(G,u)
  time = time+1
  entry[u] = time
  for each edge (u,v) in G.incidentEdges(u) do
    if state[v] = “undiscovered” then
      state[v] = “discovered”
      prev[v] = u
      dfshelper(G,v)
  state[u] = “processed”
  time = time+1
  exit[u] = time
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Applications of DFS – Directed Graphs

• topological sort – order the vertices of G so                 
that all edges are oriented from an earlier vertex               
to a later one

– possible if and only if G is a DAG (directed acyclic graph)

– algorithm – the ordering is the reverse of the order in which 
vertex processing is completed (exit time) when dfs is started 
from a vertex s where indeg(s) = 0  (i.e. s has no incoming edges)

•

•

intuition
• exit timestamp for u is after all of the outgoing incident edges (u,v) have 

been processed, which means u’s exit timestamp is after the exit 
timestamps of its adacent vertices v and u occurs before v in the 
topological ordering

• edges are oriented (u,v) – u appears before v in the ordering so the edges 
are correctly oriented
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Applications of DFS – Directed Graphs

• is G strongly connected?  – strongly connected means 
a directed path exists between every pair of vertices
– algorithm

• dfs(s), then reverse all of the edges of G and repeat dfs(s) – G is strongly 
connected if the same set of vertices are discovered/processed each time

• strongly connected components
– an algorithm

• repeatedly compute the intersection of vertices                                    
reachable by dfs(s) and by dfs(s) with the graph's                                
edges reversed, removing each set as a strongly                                    
connected component

– another algorithm
• repeatedly find a cycle and contract those vertices                                 

into a single vertex
• when there are no more cycles, each remaining                                     

vertex represents a different strongly connected                               
component

http://rosalind.info/glossary/algo-strongly-connected-component/
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Takeaways

• DFS algorithm

• DFS-based algorithms / applications
– graph traversal
– reachability
– finding cycles (undirected graphs)
– cut vertices (undirected graphs)
– cut edges (undirected graphs)
– topological sort (directed graphs)
– strongly connected / strongly connected components (directed 

graphs)


