Minimum Spanning Tree

A spanning tree is a tree (no cycles)
connecting all of the vertices of the graph
A minimum spanning tree is the spanning tree with the lowest total cost of its edges
Observations -

- every spanning tree on a connected graph with n vertices has exactly n -1 edges
justification: repeatedly remove a degree 1 vertex and its
incident edge until there is only one vertex (and no edges) left -
$n-1$ vertices and edges have been removed
- there is always at least one such vertex in a tree with $\mathrm{n}>1$ or else ther would be a cycle
there is still a tree after removing a vertex and incident edge - removing from a tree doesn't introduce cycles and a leaf is never a cut vertex so its removal doesn't disconnect the tree
- if the edge weights are distinct, there is a unique MST
- if the edge weights are not distinct, the MST may not be unique

Algorithms for MST

Kruskal's algorithm -

- start with a tree T containing no edges
- repeatedly add the lowest-cost edge remaining that connects two different chunks of the tree-in-progress

Prim's algorithm -

- start with a tree T containing a single vertex S
- repeatedly add the cheapest edge connecting a vertex in S and a vertex in V-S to T

Observations - Cut Property

Observation: (cut property)
Let $G=(V, E)$ and let S be a subset of V. Then the cheapest edge e connecting a vertex in S and a vertex in V S is part of some MST of G.
intuition -
let S be the red vertices and $V-S$ be the white vertices
exactly one of the three labeled edges is needed to complete the spanning tree shown in bold) - anything but the

cheapest won't be an MS

CPSC 327 : Datas Stucucures and Aloootiths \cdot Soring 202

Kruskal's Algorithm

The idea:

- repeatedly add the lowest-cost edge remaining that connects two different chunks of the tree-in-progress
Implementation details:
- "lowest-cost edge remaining"
\rightarrow edges are considered in order by weight, so sort them
- "connects two different chunks of the tree-in-progress"
\rightarrow need a data structure which efficiently supports
- determine if two vertices belong to the same component
- merge two components
- initialize with each vertex in a separate component

Union-Find (Disjoint-Set)

The disjoint-set (or union-find) ADT supports the following operations -

- makeset (x) - create a set containing a single element x
- find (x) - determine the set x belongs to
- union (x, y) - merge two sets x and y

In the context of Kruskal's algorithm -

- at the beginning, every vertex is in its own set makeset(x)
- an edge (u, v) connects different sets if find $(u) \neq$ find (v)
- adding an edge (u, v) to the spanning tree combines two sets - union(u,v)

CPSC 327: Data Structures and Alloofitms \cdot Soping 2024

Kruskal's Algorithm

Running time using union-find?

- initialization: makeset(v) for each vertex O (makeset) per iteration, n iterations
- finding the lowest-cost edge
can sort edges by weight, then iterate through
$O(m \log n)$ to sort + O(1) time per iteration, m iterations
- determine if an edge connects two separate chunks O(find) per iteration, m iterations
- combine two chunks when an edge is chosen O(union) per edge chosen, $n-1$ edges chosen
\rightarrow total: $\mathrm{O}(\mathrm{n} \times$ makeset $+\mathrm{m} \log \mathrm{n}+\mathrm{m} \times$ find $+\mathrm{n} \times$ union $)$

CPSC 327: Data Stucucures and Alooritms \cdot Spring 2024

