

CPSC 327: Data Structures and Algorithms • Spring 2024 102

Minimum Spanning Tree

A spanning tree is a tree (no cycles)
connecting all of the vertices of the graph.
A minimum spanning tree is the spanning
tree with the lowest total cost of its edges.

Observations –
• every spanning tree on a connected graph with n vertices

has exactly n-1 edges
– justification: repeatedly remove a degree 1 vertex and its

incident edge until there is only one vertex (and no edges) left –
n-1 vertices and edges have been removed

• there is always at least one such vertex in a tree with n > 1 or else there
would be a cycle

• there is still a tree after removing a vertex and incident edge – removing
from a tree doesn't introduce cycles and a leaf is never a cut vertex so its
removal doesn't disconnect the tree

• if the edge weights are distinct, there is a unique MST
• if the edge weights are not distinct, the MST may not be

unique CPSC 327: Data Structures and Algorithms • Spring 2024 103

Observations – Cut Property

Observation: (cut property)

Let G = (V,E) and let S be a subset of V. Then the
cheapest edge e connecting a vertex in S and a vertex in V-
S is part of some MST of G.

intuition –

let S be the red vertices and V-S be the
white vertices

exactly one of the three labeled edges is
needed to complete the spanning tree
(shown in bold) – anything but the
cheapest won't be an MST

CPSC 327: Data Structures and Algorithms • Spring 2024 105

Algorithms for MST

Kruskal's algorithm –
• start with a tree T containing no edges
• repeatedly add the lowest-cost edge remaining that

connects two different chunks of the tree-in-progress

Prim's algorithm –
• start with a tree T containing a single vertex S
• repeatedly add the cheapest edge connecting a vertex in

S and a vertex in V-S to T

CPSC 327: Data Structures and Algorithms • Spring 2024 106

Kruskal's Algorithm

The idea:
• repeatedly add the lowest-cost edge remaining that

connects two different chunks of the tree-in-progress

Implementation details:

• “lowest-cost edge remaining”
→ edges are considered in order by weight, so sort them

• “connects two different chunks of the tree-in-progress”
→ need a data structure which efficiently supports

• determine if two vertices belong to the same component
• merge two components
• initialize with each vertex in a separate component

CPSC 327: Data Structures and Algorithms • Spring 2024 107

Union-Find (Disjoint-Set)

The disjoint-set (or union-find) ADT supports the following
operations –

• makeset(x) – create a set containing a single element x
• find(x) – determine the set x belongs to
• union(x,y) – merge two sets x and y

In the context of Kruskal's algorithm –

• at the beginning, every vertex is in its own set –
makeset(x)

• an edge (u,v) connects different sets if find(u) ≠ find(v)
• adding an edge (u,v) to the spanning tree combines two

sets – union(u,v)

CPSC 327: Data Structures and Algorithms • Spring 2024 108

Kruskal's Algorithm

Running time using union-find?

• initialization: makeset(v) for each vertex
– O(makeset) per iteration, n iterations

• finding the lowest-cost edge
– can sort edges by weight, then iterate through
– O(m log n) to sort + O(1) time per iteration, m iterations

• determine if an edge connects two separate chunks
– O(find) per iteration, m iterations

• combine two chunks when an edge is chosen
– O(union) per edge chosen, n-1 edges chosen

→ total: O(n ✕ makeset + m log n + m ✕ find + n ✕ union)

