

CPSC 327: Data Structures and Algorithms • Spring 2024 12

Developing Algorithms

Strategies –

• realize your problem is another well-known problem in
disguise
– it is searching or sorting
– there’s a data structure for that
– it is a graph problem

• develop a new algorithm
– divide-and-conquer
– iterative
– series of choices – greedy, recursive backtracking, dynamic

programming

CPSC 327: Data Structures and Algorithms • Spring 2024 13

Searching

• searching for a key in a collection

• worth considering distinct from dictionaries in situations
where the structures are static (no insertion or deletion)

• basic approaches
– sequential search
– binary search

CPSC 327: Data Structures and Algorithms • Spring 2024 14

Searching

• sequential search typically fastest for small collections (≤ 20
elements)

• sequential search is simpler to implement
– 17 years between invention of binary search and the first correct

implementation published

• are some items accessed more often than others? – put near the
beginning of the search
– easier to do for sequential search
– for BST build optimal BST

• might access frequencies change over time? – self-organizing lists
or trees (splay trees)
– can extend the useful range of sequential search up to 100 elements

• is the key close by? – one-sided binary search
• can you guess where the key should be? – interpolation search

– but: it takes work to optimize enough to beat binary search, and a highly-
tuned structure is very sensitive to a change in distribution

• does all the data fit in memory? – B-trees or van Emde Boas trees
– cluster keys into pages to minimize disk accesses

CPSC 327: Data Structures and Algorithms • Spring 2024 15

Sorting

• how many keys will be sorted?

– for n ≤ 100, any quadratic-time algorithm will do
• insertion sort faster, simpler, less likely to be buggy than bubblesort
• shellsort much faster than insertion sort but requires getting the right

insertion sequences

– for n > 100, need O(n log n) algorithm
• heapsort, quicksort, mergesort

– for n > 100,000,000, need external-memory sorting algorithm to
minimize disk accesses

• B-trees
• multiway mergesort

CPSC 327: Data Structures and Algorithms • Spring 2024 16

Sorting

• duplicate keys?
– is there a secondary key to break ties?
– a stable sort preserves the initial ordering

• if important, probably better to explicitly code position as a secondary key
• most of the quadratic-time algorithms are stable but most of the O(n log n)

ones are not

• what do you know about your data?
– is it already partially sorted? – insertion sort is O(n) best case
– are the keys randomly or uniformly distributed? – bucket or

distribution sort
– are the keys very long or hard to compare?

• use a short prefix, then resolve ties using the full key
• radix sort

– is the range of possible keys very small? – utilize a bit vector

CPSC 327: Data Structures and Algorithms • Spring 2024 17

Sorting

• best general-purpose internal sorting algorithm is
quicksort
– requires tuning for max performance

• use a library function instead of coding quicksort yourself
– e.g. a poorly-written quicksort is likely slower than a poorly-

written heapsort

CPSC 327: Data Structures and Algorithms • Spring 2024 18

Algorithmic Applications

Many problems boil down to direct applications of the right
data structure.

e.g. basic (and not so basic) ADTs –
• Stack – reversing, matching closest, depth-first search
• Queue – breadth-first search
• PriorityQueue – sorting, best-first search, greedy

algorithms
• suffix trees – many string processing applications

e.g. hashing –
• can gain speed improvements when comparing the

elements themselves is expensive
– e.g. string matching, duplicate detection

• verification, proof of possession
CPSC 327: Data Structures and Algorithms • Spring 2024 19

• all occurrences of a pattern in a text
• finding duplicates
• finding the most common element
• fingerprinting
• inexact pattern matching
• longest palindrome
• longest substring common to a set of

strings
• lookup
• plagiarism detection
• proof of unmodified content
• sorting when deletions follow

insertions
• sorting when deletions are

interleaved with insertions

• suffix tree
• hashing
• hashing
• hashing
• hashing
• suffix tree
• suffix tree

• dictionary
• hashing
• hashing
• sorting algorithm

• priority queue

CPSC 327: Data Structures and Algorithms • Spring 2024 20

String Matching

• does text string t contain the pattern string p as a substring,
and if so, where?

• simple algorithm
– for each index i of t, check if p matches t[i..i+|p|-1]
– running time: O(|t||p|)

• Rabin-Karp algorithm
– observations

• if h(s1) and h(s2) are different, s1 and s2 are different
• if h(s1) and h(s2) are the same, s1 and s2 are very likely the same

– algorithm: for each index i of t, check if p matches t[i..i+|p|-1] only if
h(p) == h(t[i..i+|p|-1])

– running time
• computing h(s) is O(|s|) but the incremental computation of h(s[j+1...j+k+1]) given

h(s[j..j+k]) is O(1)
• total time: O(|t|+|p|) to compute all of the hashes + O(|p|) per collision x number of

false collisions = O(|t|+|p|) expected
– expected probability of a false collision is 1/N
– with N = |t|, expect one false collision over the course of checking substrings of t
– with N = |t|2, expect very small chance of any false collisions

CPSC 327: Data Structures and Algorithms • Spring 2024 21

Rabin-Karp

• Michael Rabin, 1931 –

– Israeli mathematician and computer scientist

– known for work in computational complexity theory
• Miller-Rabin primality test
• Rabin cryptosystem

– received Turing Award in 1976
• for introducing the idea of non-deterministic finite automata

https://en.wikipedia.org/wiki/Michael_O._Rabin
https://en.wikipedia.org/wiki/Richard_M._Karp

CPSC 327: Data Structures and Algorithms • Spring 2024 22

Rabin-Karp

• Richard M Karp, 1935 –
– American computer scientist

– known for work in algorithms and complexity
• 21 NP-complete problems
• Edmonds-Karp algorithm – maximum flow
• Hopcroft-Karp algorithm – maximum cardinality

matchings in bipartite graphs
• Held-Karp algorithm – exact exponential-time algorithm for TSP
• Karp-Lipton theorem – if SAT can be solved by Boolean circuits with a

polynomial number of logic gates, the polynomial hierarchy collapses

– received Turing Award in 1985
• development of efficient algorithms for network flow and other

combinatorial optimization problems
• connection of polynomial-time computability and algorithmic efficiency
• a standard methodology for proving problems NP-complete

https://en.wikipedia.org/wiki/Michael_O._Rabin
https://en.wikipedia.org/wiki/Richard_M._Karp CPSC 327: Data Structures and Algorithms • Spring 2024 23

Duplication Detection and Verification

• in a large collection of documents –
– is a given document different from all the rest?
– is part of a document plagiarized?

• verifying integrity
– e.g. to ensure that the file downloaded is the authentic original

file and not something substituted by a hacker

• password verification

• proof of possession
– e.g. to prevent cheating in a closed-bid auction

CPSC 327: Data Structures and Algorithms • Spring 2024 24

Suffix Trees

CPSC 327: Data Structures and Algorithms • Spring 2024 25

Suffix Trees

• all occurrences of a pattern in a text

https://www.geeksforgeeks.org/pattern-searching-using-suffix-
tree/

suffix tree for banana

CPSC 327: Data Structures and Algorithms • Spring 2024 26

Suffix Trees

• longest substring common to a set of strings

https://en.wikipedia.org/wiki/Longest_common_substring CPSC 327: Data Structures and Algorithms • Spring 2024 27

Suffix Trees

• longest palindrome

NA

$ N
B#

https://stackoverflow.com/questions/7043778/longest-palindrome-in-a-string-using-suffix-tree

longest palindrome is the longest common
substring of the forward and reversed string
→ lowest node with both $ and # leaves

