Developing Algorithms

Strategies —

realize your problem is another well-known problem in
disguise

it is searching or sorting

there’s a data structure for that

it is a graph problem

develop a new algorithm
divide-and-conquer
iterative

series of choices — greedy, recursive backtracking, dynamic
programming

CPSC 327: Data Structures and Algorithms + Spring 2024 12

Searching

sequential search typically fastest for small collections (= 20
elements)
sequential search is simpler to implement
17 years between invention of binary search and the first correct
implementation published
are some items accessed more often than others? — put near the
beginning of the search
easier to do for sequential search
for BST build optimal BST
might access frequencies change over time? — self-organizing lists
or trees (splay trees)
can extend the useful range of sequential search up to 100 elements
is the key close by? — one-sided binary search
can you guess where the key should be? — interpolation search
but: it takes work to optimize enough to beat binary search, and a highly-
tuned structure is very sensitive to a change in distribution
does all the data fit in memory? — B-trees or van Emde Boas trees
cluster keys into pages to minimize disk accesses

a

Searching

searching for a key in a collection

worth considering distinct from dictionaries in situations
where the structures are static (no insertion or deletion)

basic approaches
sequential search
binary search

CPSC 327: Data Structures and Algorithms + Spring 2024 13

Sorting

how many keys will be sorted?

for n = 100, any quadratic-time algorithm will do
insertion sort faster, simpler, less likely to be buggy than bubblesort
shellsort much faster than insertion sort but requires getting the right
insertion sequences

for n > 100, need O(n log n) algorithm
heapsort, quicksort, mergesort

for n > 100,000,000, need external-memory sorting algorithm to
minimize disk accesses

B-trees

multiway mergesort

CPSC 327: Data Structures and Algorithms + Spring 2024 15

Sorting

duplicate keys?
is there a secondary key to break ties?
a stable sort preserves the initial ordering
if important, probably better to explicitly code position as a secondary key

most of the quadratic-time algorithms are stable but most of the O(n log n)
ones are not

what do you know about your data?
is it already partially sorted? — insertion sort is O(n) best case
are the keys randomly or uniformly distributed? — bucket or
distribution sort
are the keys very long or hard to compare?
use a short prefix, then resolve ties using the full key
radix sort

is the range of possible keys very small? — utilize a bit vector

CPSC 327: Data Structures and Algorithms + Spring 2024 16

Algorithmic Applications

Many problems boil down to direct applications of the right
data structure.

e.g. basic (and not so basic) ADTs —
Stack — reversing, matching closest, depth-first search
Queue — breadth-first search

PriorityQueue — sorting, best-first search, greedy
algorithms

suffix trees — many string processing applications

e.g. hashing —
can gain speed improvements when comparing the
elements themselves is expensive
e.g. string matching, duplicate detection
verification, proof of possession

Sorting

best general-purpose internal sorting algorithm is
quicksort
requires tuning for max performance

use a library function instead of coding quicksort yourself

e.g. a poorly-written quicksort is likely slower than a poorly-
written heapsort

CPSC 327: Data Structures and Algorithms + Spring 2024 17

Match the task with a data structure / technique that
can be used to solve it.

all occurrences of a pattern in a text suffix tree
finding duplicates hashing
finding the most common element hashing
fingerprinting hashing
inexact pattern matching hashing
longest palindrome suffix tree
longest substring common to a set of suffix tree
strings

lookup dictionary
plagiarism detection hashing
proof of unmodified content hashing
sorting when deletions follow sorting algorithm
insertions

sorting when deletions are priority queue

interleaved with insertions

CPSC 327: Data Structures and Algorithms + Spring 2024 19

String Matching

» does text string t contain the pattern string p as a substring,
and if so, where?

* simple algorithm
for each index i of t, check if p matches t[i..i+|p|-1]
running time: O(|t||p])

* Rabin-Karp algorithm
observations
« if h(s,) and h(s;) are different, s, and s, are different
« if h(s,) and h(s,) are the same, s; and s, are very likely the same
algorithm: for each index i of t, check if p matches t[i..i+|p|-1] only if
h(p) == h(t[i..i+|p|-1])
running time
= computing h(s) is O(|s|) but the incremental computation of h(s[j+1...j+k+1]) given
h(s[j..j+k]) is O(1)
« total time: O(|t|+|p|) to compute all of the hashes + O(|p|) per collision x number of
false collisions = O(|t|+|p|) expected
expected probability of a false collision is 1/N

with N = |t|, expect one false collision over the course of checking substrings of t -
with N = [t[?, expect very small chance of any false collisions ®

* Richard M Karp, 1935 —
American computer scientist

known for work in algorithms and complexity
21 NP-complete problems

Edmonds-Karp algorithm — maximum flow
Hopcroft-Karp algorithm — maximum cardinality
matchings in bipartite graphs

Held-Karp algorithm — exact exponential-time algorithm for TSP

Karp-Lipton theorem — if SAT can be solved by Boolean circuits with a
polynomial number of logic gates, the polynomial hierarchy collapses

.

.

.

.

received Turing Award in 1985

development of efficient algorithms for network flow and other
combinatorial optimization problems

connection of polynomial-time computability and algorithmic efficiency
« a standard methodology for proving problems NP-complete

.

https://en.wikipedia.org/wiki/Michael_O._Rabin

CPSC 327: Data Structures and Algorithms + Spring 2024 Pips e ook Rl ard AN Aears)

Rabin-Karp

* Michael Rabin, 1931 —
Israeli mathematician and computer scientist

known for work in computational complexity theory
« Miller-Rabin primality test
* Rabin cryptosystem

received Turing Award in 1976
« for introducing the idea of non-deterministic finite automata

https://en.wikipedia.org/wiki/Michael_O._Rabin

https://en.wikipedia.org/wiki/Richard_M._Karp &

CPSC 327: Data Structures and Algorithms + Spring 2024

Duplication Detection and Verification

* in a large collection of documents —
is a given document different from all the rest?
is part of a document plagiarized?

« verifying integrity
e.g. to ensure that the file downloaded is the authentic original
file and not something substituted by a hacker

+ password verification

 proof of possession
e.g. to prevent cheating in a closed-bid auction

CPSC 327: Data Structures and Algorithms + Spring 2024 2

Suffix Trees

In its simplest instantiation, a suflix tree is simply a frie of the n suffixes of
an n-character string 5. A trie is a tree structure, where each edge represents
one character, and the root represents the null string. Each path from the root
represents a string, described by the characters labeling the edges traversed.
Every finite set of words defines a distinet trie, and two words with common
prefixes branch off from each other at the first distinguishing character. Each
leaf denotes the end of a string. Figure

illustrates a simple trie.

A trie on strings the, their, the

= ™
CPSC 327: Data Structures and Algorithms + Spring 2024

Suffix Trees

* longest substring common to a set of strings

Longest substring common to a set of strings — Build a single collapsed
suffix tree containing all suffixes of all strings, with each leaf labeled with
its original string. In the course of doing a depth-first search on this tree,
we mark each node with both the length of its common prefix and the
number of distinct strings that are children of it. From this information,
the best node can be selected in linear time.

The longest common substrings of a set of strings can be
found by building a generalized suffix tree for the strings,
and then finding the deepest internal nodes which have leaf
nodes from all the strings in the subtree below it. The figure
on the right is the suffix tree for the strings "ABAB", "BABA"
and "ABBA", padded with unique string terminators, to
become "ABAB$0", "BABAS1" and "ABBAS2". The nodes
representing "A", "B", "AB" and "BA" all have descendant
leaves from all of the strings, numbered 0, 1 and 2.

CPSC 327: Data Structures and Algorithms « Spring 2024 https://en.wikipedia.org/wiki/Longest_common_substring 2

Suffix Trees

¢ all occurrences of a pattern in a text

Find all occurrences of q as a substring of S — Just as with a trie, we can
walk from the root to the node n, associated with g. The positions of all
occurrences of ¢ in S are represented by the descendants of n,, which can
be identified using a depth-first search from n,. With a collapsed suffix
tree, it takes O(|q| + k) time to find the k occurrences of ¢ in S.

suffix tree for banana

https://www.geeksforgeeks.org/pattern-searching-using-suffi

Suffix Trees

¢ longest palindrome

Find the longest palindrome in S — A palindrome is a string that reads the
same if the order of characters is reversed, such as madam. To find the
longest palindrome in a string S, build a single suffix tree containing all
suffixes of § and the reversal of S, with each leaf identified by its starting
position. A palindrome is defined by any node in this tree that has forward
and reversed children from the same position. o

St = banana$

Sy = ananab#

longest palindrome is the longest common
substring of the forward and reversed string
- lowest node with both $ and # leaves

https:/ '7043778/longest-palindrome-in-a-string-using-suffix-tree 27

