

CPSC 327: Data Structures and Algorithms • Spring 2024 4

Correctness

Establishing correctness is a key element of designing
algorithms.

• that an algorithm is correct is often not as obvious as it is
for data structures, especially for optimization problems or
when cleverness is needed to improve running times

Reasoning about correctness needs more than just “it looks
reasonable”.

• proof involves a chain of reasoning from assumptions to
end result

CPSC 327: Data Structures and Algorithms • Spring 2024 5

Correctness

Ingredients.

• a clear problem specification is essential
– defines the set of allowed input instances
– defines the required properties for the output

Impediments.

• having too broad a class of input instances
– may need a more restricted problem in order to find an efficient

algorithm

• a poorly defined question
– e.g. looking for the “best” solution without defining what that is

• compound goals that can't be achieved simultaneously or
which become difficult to reason about

• wrong level of detail in the algorithm
– too much detail obscures the idea
– not enough detail means you don't have enough to work with

CPSC 327: Data Structures and Algorithms • Spring 2024 6

Proof Techniques – Induction

• applies to both loops and recursion
– with loops, establish a loop invariant P(i) which is a statement

about correctness at the beginning of iteration i
– with recursion, P(n) is that a correct solution for size n

• strategy – to prove P(n) for n ≥ n
0

– base case – show that P(n
0
) is true

– inductive case – show P(k) → P(k+1), that is, if P(k) is true, then
the code does the right thing to produce P(k+1)

CPSC 327: Data Structures and Algorithms • Spring 2024 7

Proof Techniques – Contradiction

• assume that what you want to prove is false

• develop logical consequences from this assumption, until
you get to one that is demonstrably false

• since there were no flaws in the deduction, the
assumption that what you want to prove is false must
have been faulty and thus what you want to prove is true

CPSC 327: Data Structures and Algorithms • Spring 2024 8

Proof Techniques – Incorrectness

One counterexample is all that is needed to prove an
algorithm incorrect.

Properties of a good counterexample.

• simple, which often means small
• verifiable – need to be able to compute the algorithm's

output and give a better answer

Strategies.

• think exhaustively – can often enumerate all possible
inputs of a small size

• hunt for weakness – look for a case where the algorithm's
choice is the wrong thing to do

• try inputs with duplicates or ties, as that neutralizes the
algorithm's choice

• seek extremes rather than uniformity
CPSC 327: Data Structures and Algorithms • Spring 2024 9

Counterexamples

• both numbers negative e.g. -5, -2
– -5 + -2 = -7 ≥ min(-5,-2) = -5 → false

CPSC 327: Data Structures and Algorithms • Spring 2024 10

Counterexamples

subset sum problem

subset sum problem

Pick

Pick

Pick

