

CPSC 327: Data Structures and Algorithms • Spring 2024 29

Developing Algorithms

Strategies –

• realize your problem is another well-known problem in
disguise
– it is searching or sorting
– there’s a data structure for that
– it is a graph problem

• develop a new algorithm
– divide-and-conquer
– iterative
– series of choices – greedy, recursive backtracking, dynamic

programming

CPSC 327: Data Structures and Algorithms • Spring 2024 30

Modeling With Graphs

Things to decide –

• what the vertices represent
– vertices represent things

• what the edges represent
– edges represent connections (relationships) between pairs of

things
• does the relationship simply exist or not exist? – indicated by presence or

absence of edge
• does the relationship have a strength? – modeled by edge weights
• is the relationship one-way? – indicated by directed or undirected edges

• what a solution to the original problem looks like in the
graph
– ideally it is a concept for which there is a known algorithm

• e.g. reachability, shortest path, minimum spanning tree, cut vertices

CPSC 327: Data Structures and Algorithms • Spring 2024 31

Modeling With Graphs

As you think about graph algorithms, identify –

• the flavor of graph

– connected or not connected
– simple or containing self loops and/or

multiedges
– sparse vs dense
– cyclic vs acyclic
– weighted vs unweighted

• if weighted, are there negative weights?
negative weight cycles?

– embedded vs topological
• is there a particular ordering of incident

edges for each vertex?

– explicit vs implicit
• does a graph data structure need to be built?

these properties are
consequences of the
modeling choices rather
than independent decisions

they are important to
recognize because they can
affect the algorithms used
and the choice of
implementation for the
graph structure (and other
data structures)

e.g. representing an
embedded graph would
require an adjacency list
implementation
e.g. (recursive) DFS doesn't
require explicit graph
structure, but BFS and
Dijkstra's do (at least for
vertices) CPSC 327: Data Structures and Algorithms • Spring 2024 32

CPSC 327: Data Structures and Algorithms • Spring 2024 33

How to Model With Graphs

• the task is to find the minimum number of button presses
to get from one configuration to another

– a strategy is to find the shortest such sequence of configurations
and then count the number of steps
→ a sequence of configurations sounds like a path

• vertices represent allowed configurations
– no vertices for forbidden configurations

• edges represent button presses
– undirected because a button press is reversible

CPSC 327: Data Structures and Algorithms • Spring 2024 34

CPSC 327: Data Structures and Algorithms • Spring 2024 35

Adapting Algorithms

If you don't have an exact algorithm for the problem you
need to solve, there are two options –

Option #1 – adapt an existing algorithm to work with your
situation

Option #2 – build an instance of a known problem so that
the solution produced by a standard algorithm solves your
problem

CPSC 327: Data Structures and Algorithms • Spring 2024 36

Adapting Algorithms

A concrete example –
Find the shortest path from s to every other vertex in a
graph with vertex weights.

– cost of path = sum of weights of vertices on the path

Option #1 – adapt Dijkstra's algorithm to work with vertex
weights instead of edge weights.

– requires proving that the new algorithm is correct

Option #2 – transform the vertex-weighted graph into an edge-
weighted graph so that the shortest paths in the edge-weighted
graph have the same cost as the shortest paths in the vertex
weighted graph.

– make the graph directed
• every undirected edge (u,v) in the original graph will turn into two directed

edges (u,v) and (v,u)

– add new start vertex s' with edge s'→s
– give edge i→j the weight of vertex j
– run Dijkstra's algorithm starting from s'

CPSC 327: Data Structures and Algorithms • Spring 2024 37

Adapting Algorithms

Advantages of option #2 –

• can be easier to argue why a solution in the new graph is
equivalent to a solution in the original graph than to argue
correctness of a new algorithm

• can use a library implementation of the algorithm instead
of having to code your own variation

CPSC 327: Data Structures and Algorithms • Spring 2024 38

