

CPSC 327: Data Structures and Algorithms • Spring 2024 50

Developing Algorithms

Strategies –

• realize your problem is another well-known problem in
disguise
– it is searching or sorting
– there’s a data structure for that
– it is a graph problem

• develop a new algorithm
– divide-and-conquer
– iterative
– series of choices – greedy, recursive backtracking, dynamic

programming

CPSC 327: Data Structures and Algorithms • Spring 2024 51

Algorithmic Paradigms

Iterative algorithms proceed forward towards the solution
one step at a time.

Recursive algorithms have friends solve subproblems.
– construct a complete solution out of complete solutions for

smaller subproblems
• induction lets you demonstrate that the solution for the bigger problem is

correct

– base case defines when you stop
• making progress ensures that you will get there (recursion will terminate)

– in terms of problem size

CPSC 327: Data Structures and Algorithms • Spring 2024 52

16 Steps to Recursive Success

establishing the
problem
1.specifications
2.examples
3.size

brainstorming
ideas
4. targets
5. tactics
6.approaches

showing
correctness
13.termination

● making progress
● reaching the end

14. correctness
● establish the base

case(s)
● show the main

case
● final answer

determining
efficiency
15.implementation
16.time and space

defining the
algorithm
7. generalize / define

subproblems
8. base case(s)
9. main case
10.top level

● initial subproblem
● setup
● wrapup

11.special cases
12.algorithm

CPSC 327: Data Structures and Algorithms • Spring 2024 53

Recursive Patterns

Characterized by the number and size of subproblems –

• 1 friend – can often easily be written as iterative instead

– constant amount – subproblem is smaller by a fixed number of
elements (typically 1)

• e.g. an = a an-1 or n! = n (n-1)!

– constant factor – subproblem is a fixed fraction of the size
(typically ½) – “decrease and conquer”

• e.g. binary search
• e.g. an = (an/2)2 if n is even, a (a(n-1)/2)2 if n is odd

– variable factor – subproblem is smaller, but the size of the
reduction varies

• e.g. gcd(m,n) = gcd(n,m mod n)

CPSC 327: Data Structures and Algorithms • Spring 2024 54

Recursive Patterns

Characterized by the number and size of subproblems –

• 2+ friends

– divide-and-conquer – split into b ≥ 2 subproblems of size n/b
(b is typically 2)

• process input – split input in straightforward way, then do work combining
subproblem solutions

– e.g. mergesort

• produce output – do work creating the subproblem instances, then just
add a piece to the subproblem solutions

– e.g. quicksort

• narrowing the search space – each friend searches a different part of the
search space

– case analysis – each friend considers a different choice
• e.g. depth first search

CPSC 327: Data Structures and Algorithms • Spring 2024 55

Solving Recurrence Relations

Recursive algorithms tend to lead to recurrence relations in
one of two forms:

• split off b elements
– T(n) = a T(n-b) + f(n) where f(n) = 0 or Θ(nc logd n)

• divide into subproblems of size n/b
– T(n) = a T(n/b) + f(n) where Θ(nc logd n)

CPSC 327: Data Structures and Algorithms • Spring 2024 56

Solving Recurrence Relations

T(n) = a T(n-b) + f(n) where f(n) = Θ(nc logd n)

Cases are based on the number of subproblems and f(n).

a f(n) behavior solution

> 1 any
base case dominates
(too many leaves) T(n) = Θ(an/b)

1 ≥ 1 all levels are important T(n) = Θ(n f(n))

CPSC 327: Data Structures and Algorithms • Spring 2024 57

Solving Recurrence Relations

T(n) = a T(n/b) + f(n) where f(n) = Θ(nc logd n)

Cases are based on the relationship between the number of
subproblems, the problem size, and f(n).

(log a)/
(log b)

vs c
d behavior solution

< any
top level dominates – more work
splitting/combining than in subproblems
(root too expensive)

T(n) = Θ(f(n))

= > -1
all levels are important – log n steps to
get to base case, and roughly same
amount of work in each level

T(n) = Θ(f(n) log n)

= < -1 base cases dominate – so many
subproblems that taking care of all the
base cases is more work than
splitting/combining (too many leaves)

T(n) = Θ(n(log a)/(log b))
> any

CPSC 327: Data Structures and Algorithms • Spring 2024 58

Divide-and-Conquer

The goal in developing a divide-and-conquer algorithm is
often to improve on a polynomial brute-force solution.

• targets should identify the brute force solution and its
running time
– this should be pretty straightforward
– if not, then divide-and-conquer is being used to try to find a

solution in the first place

CPSC 327: Data Structures and Algorithms • Spring 2024 59

16 Steps to Divide-and-Conquer Success

establishing the
problem
1.specifications
2.examples
3.size

brainstorming
ideas
4. targets

● identify brute force
algorithm / running
time

5. tactics
6.approaches

● process input
● produce output
● narrow the search

space

showing
correctness
13.termination

● making progress
● reaching the end

14. correctness
● establish the base

case(s)
● show the main

case
● final answer

determining
efficiency
15.implementation
16.time and space

defining the
algorithm
7. generalize / define

subproblems
8. base case(s)
9. main case
10.top level

● initial subproblem
● setup
● wrapup

11.special cases
12.algorithm

CPSC 327: Data Structures and Algorithms • Spring 2024 60

Given the price of a stock over an n-day period, determine
the best time to have bought and sold 1000 shares of that
stock. (Buy and sell once, on different days.)

produce output

CPSC 327: Data Structures and Algorithms • Spring 2024 61

Given the price of a stock over an n-day period, determine
the best time to have bought and sold 1000 shares of that
stock. (Buy and sell once, on different days.)

CPSC 327: Data Structures and Algorithms • Spring 2024 62

Given the price of a stock over an n-day period, determine
the best time to have bought and sold 1000 shares of that
stock. (Buy and sell once, on different days.)

