Implementation Details

There are three typical patterns for recursive backtracking algorithms, depending on the goal:

- find a solution
- find all solutions
- find an optimal solution

Implementation Patterns

// find all solutions

void solve (partial solution, subproblem, solution list) \{
if the partial solution is complete, add it to the solution list
else
for each legal next choice
generate partial solution and subproblem
with that choice made
solve(new partial solution new subproblem,solution list
\}

Implementation Patterns
// find a single solution
solution solve (partial solution, subproblem) \{ if the partial solution is complete, return it as the solution else
for each legal next choice
generate partial solution and subproblem with that choice made
result $=$ solve(new partial solution,
new subproblem)
if result is a solution
return it
return no solution
\}
an alternative is that the partial solution is updated so that it hold the complete solution, and true/false is returned indicating whether a solution has been found

```
Implementation Patterns
// find optimal solution
solution solve ( partial solution, subproblem,
                                    best solution so far ) {
    if the partial solution is complete,
        return the better of it and the best so far
    else
        for each legal next choice
            generate partial solution and subproblem
            with that choice made
            result = solve(new partial solution
                    new subproblem,best so far)
            if result is a solution and better than the
            best so far,
            update the best so far
        return the best so far
```

\}

Running Time

How long does this take?

- DFS is $\mathrm{O}(\mathrm{n}+\mathrm{m})$
- $n=$ number of vertices, $m=$ number of edges

How big is the state space graph?

- branching factor b - number of next choices
- longest path h - largest number of decisions needed to reach a base case
\rightarrow worst case $n=\mathrm{O}\left(b^{h}\right), m=\mathrm{O}\left(b^{h+1}\right)$
if there are multiple paths to the same vertex, n can be much smaller - but without storing discovered vertices, repeat visits are handled the same as new visits (and storing discovered vertices akes exponential space)

This...is not good.

Key Points - Making Backtracking Practical

- while reducing how much is explored is the dominating factor, it is also important to be efficient in what is done for each subproblem
- determining whether or not to prune must be efficient
modify/restore rather than copying for generating subproblems and partial solutions
exploit clever representations

Key Points - Making Backtracking Practical

- recursive backtracking is generally not practical without additional effort

DFS is $\mathrm{O}(\mathrm{n}+\mathrm{m})$ where $\mathrm{n}=\mathrm{O}\left(\mathrm{b}^{\mathrm{h}}\right)$
$b=$ branching factor - number of next options for each choice
$\mathrm{h}=$ length of longest path - (maximum) number of choices made to get to a complete solution

Generating New Partial Solutions and Subproblems

- making a choice typically means an incremental change to the current partial solution and subproblem
- generating the new by copying the old may be expensive copying a collection takes time proportional to the size of the collection

Instead, it may be more efficient to modify the current partial solution and subproblem and then undo.

```
for each legal next choice
    add choice to partial solution and remove
        from subproblem
    result = solve(modified partial solution,
```

 modified subproblem)
 remove choice from partial solution and add
 to subproblem