

CPSC 327: Data Structures and Algorithms • Spring 2024 103

Implementation Details

There are three typical patterns for recursive backtracking
algorithms, depending on the goal:

• find a solution
• find all solutions
• find an optimal solution

CPSC 327: Data Structures and Algorithms • Spring 2024 104

Implementation Patterns

// find a single solution
solution solve (partial solution, subproblem) {
 if the partial solution is complete,
 return it as the solution
 else
 for each legal next choice
 generate partial solution and subproblem
 with that choice made
 result = solve(new partial solution,
 new subproblem)
 if result is a solution,
 return it
 return no solution
}

an alternative is that the partial
solution is updated so that it holds
the complete solution, and
true/false is returned indicating
whether a solution has been found

CPSC 327: Data Structures and Algorithms • Spring 2024 105

Implementation Patterns

// find all solutions
void solve (partial solution, subproblem,
 solution list) {
 if the partial solution is complete,
 add it to the solution list
 else
 for each legal next choice
 generate partial solution and subproblem
 with that choice made
 solve(new partial solution,
 new subproblem,solution list)
}

CPSC 327: Data Structures and Algorithms • Spring 2024 106

Implementation Patterns

// find optimal solution
solution solve (partial solution, subproblem,
 best solution so far) {
 if the partial solution is complete,
 return the better of it and the best so far
 else
 for each legal next choice
 generate partial solution and subproblem
 with that choice made
 result = solve(new partial solution,
 new subproblem,best so far)
 if result is a solution and better than the
 best so far,
 update the best so far
 return the best so far
}

CPSC 327: Data Structures and Algorithms • Spring 2024 107

Running Time

How long does this take?

• DFS is O(n+m)
– n = number of vertices, m = number of edges

How big is the state space graph?

• branching factor b – number of next choices
• longest path h – largest number of decisions needed to

reach a base case

→ worst case n = O(bh), m = O(bh+1)
– if there are multiple paths to the same vertex, n can be much

smaller – but without storing discovered vertices, repeat visits
are handled the same as new visits (and storing discovered vertices
takes exponential space)

This...is not good.
CPSC 327: Data Structures and Algorithms • Spring 2024 108

Key Points – Making Backtracking Practical

• recursive backtracking is generally not practical without
additional effort
– DFS is O(n+m) where n = O(bh)

• b = branching factor – number of next options for each choice
• h = length of longest path – (maximum) number of choices made to get to

a complete solution

CPSC 327: Data Structures and Algorithms • Spring 2024 109

Key Points – Making Backtracking Practical

• while reducing how much is explored is the dominating
factor, it is also important to be efficient in what is done
for each subproblem

– determining whether or not to prune must be efficient
– modify/restore rather than copying for generating subproblems

and partial solutions
– exploit clever representations

CPSC 327: Data Structures and Algorithms • Spring 2024 110

Generating New Partial Solutions and Subproblems

• making a choice typically means an incremental change
to the current partial solution and subproblem

• generating the new by copying the old may be expensive
– copying a collection takes time proportional to the size of the

collection

Instead, it may be more efficient to modify the current partial
solution and subproblem and then undo.

 for each legal next choice
 add choice to partial solution and remove
 from subproblem
 result = solve(modified partial solution,
 modified subproblem)
 remove choice from partial solution and add
 to subproblem

