Dynamic Programming

We combine several elements -

- an optimization problem
- the need for exhaustive search (greedy is insufficient)
- the existence of repeated subproblems - it is possible to arrive at a given subproblem through different series of choices
what matters for solving a subproblem is the state resulting from the partial solution, not the partial solution itself
- memoization - so each subproblem only needs to be solved once

CPSC 327: Data Stuccurus and Algoritms • Spring 2024

Dynamic Programming vs Recursive Backtracking

Both begin with the same recursive formulation -

- solution is constructed by making a series of decisions
- you consider the next possibilities for the current decision, then ask friends to solve the problem given the consequences of each choice
The difference is how the subproblems are parameterized and enumerated -
- recursive backtracking uses a depth-first search of the solution space
- subproblems depend on the series of decisions made
- may end up enumerating all possible series of decisions
- dynamic programming iterates through the states subproblems depend on the state resulting from the series of decisions
enumerates all possible states

Optimal Substructure

- any series-of-choices formulation requires optimal substructure - an optimal solution can be constructed from optimal solutions of subproblems

[^0]16(ish) Steps to Dynamic Programming Success

Memoization

- store subproblem solutions in an array

For 0-1 knapsack, the subproblems are knapsack($\left.S^{\prime}, W^{\prime}\right)$.

- find a representation where S^{\prime} and W^{\prime} are integers ≥ 0
- if W and the weights w_{i} are integers, W^{\prime} will be integer
- since the items can be considered in any order, let S be an array of all n items and $S^{\prime}=S[k . . n-1]$
S^{\prime} can be represented by k

CPSC 327: Data Strucurues and Algorithms - Sping 2024

Order of Computation

```
    -V[k][w] = max { V[k+1][w-w w ] v vk,V[k+1][w]} if w
    -V[k][w] = V[k+1][w]
        otherwise
Order of iteration -
- \(V\) [k] depends on \(V[k+1]\)
- fill in base cases first
\(\begin{array}{ll}V[n][w]=0 \quad[n o \\ n-1 & \text { to }\end{array}\)
then fill in \(k\) from \(n-1\) to 0
- order doesn't matter for \(w\)

\section*{Formulation}

Let \(\mathrm{V}[\mathrm{k}][\mathrm{w}]=\max\) value obtainable using items \(k . . n-1\) and a total weight \(\leq w\).
- initial subproblem V[0] [W]
- main case
\[
-V[k][w]=\max \left\{V[k+1]\left[w-w_{k}\right]+v_{k}, V[k+1][w]\right\} \quad \text { if } w_{k} \leq w
\]
\[
-V[k][w]=V[k+1][w]
\]
- base case
\(-\mathrm{V}[\mathrm{k}][0]=0 \quad\) [no room left to take items]
\(-\mathrm{V}[\mathrm{n}][\mathrm{w}]=0 \quad\) [no items left to take, even with space]

CPSC 327: Data Sucucures and Agoonthms - Sping 2024

\section*{Dynamic Programming}
```

for w = 0..W do
V[n][w] = 0
for k = n-1..0 do
for w = 0..W do
if (wk <= w)
V[k][w] = max(V[k+1][w-w] + vk
else
V[k][w] = V[k+1][w])

```

\footnotetext{

}

Time and Space
\(V[k][w]=\max \left\{V[k+1]\left[w-w_{k}\right]+V_{k}, V[k+1][w]\right\} \quad\) if \(w_{k} \leq w\)
\(v[k][w]=V[k+1][w]\) otherwise

Time and space -
- Wn entries to fill \(\mathrm{x} O(1)\) per entry \(=\mathrm{O}(W n)\) total
may be much better than \(\mathrm{O}\left(2^{n}\right)\), depending on \(W\) (pseudopolynomial)
- Wn space required
- if the weights aren't integer, can solve to an arbitrary precision by multiplying \(W\) and \(w_{i}\) by a power of 10 - with a corresponding increase in time and space

CPSC 327: Data Structures and Alboritms • Spring 2024```


[^0]:    CPSC 327: Data Strucurues and Aggorithms . Spring 2024

