

CPSC 327: Data Structures and Algorithms • Spring 2024 140

Dynamic Programming

We combine several elements –

• an optimization problem
• the need for exhaustive search (greedy is insufficient)

• the existence of repeated subproblems – it is possible to
arrive at a given subproblem through different series of
choices
– what matters for solving a subproblem is the state resulting from

the partial solution, not the partial solution itself

• memoization – so each subproblem only needs to be
solved once

CPSC 327: Data Structures and Algorithms • Spring 2024 141

Optimal Substructure

• any series-of-choices formulation requires optimal
substructure – an optimal solution can be constructed
from optimal solutions of subproblems

empty partial
solution – no
decisions made optimal

solutionpartial
solution

the optimal path from a partial
solution (blue path) is part of
the optimal solution (red path)

CPSC 327: Data Structures and Algorithms • Spring 2024 142

Dynamic Programming vs Recursive Backtracking

Both begin with the same recursive formulation –

• solution is constructed by making a series of decisions
• you consider the next possibilities for the current decision,

then ask friends to solve the problem given the
consequences of each choice

The difference is how the subproblems are parameterized
and enumerated –

• recursive backtracking uses a depth-first search of the
solution space
– subproblems depend on the series of decisions made
– may end up enumerating all possible series of decisions

• dynamic programming iterates through the states
– subproblems depend on the state resulting from the series of

decisions
– enumerates all possible states CPSC 327: Data Structures and Algorithms • Spring 2024 143

16(ish) Steps to Dynamic Programming Success

establishing the
problem
1. specifications

● input
● output
● legal solution
● optimization goal

2. examples
3. size

brainstorming
ideas
4. targets
5. tactics
6. approaches

showing
correctness
13.termination

● making progress
● reaching the end

14. correctness
● establish the base

case(s)
● show the main case
● final answer

determining
efficiency
15.implementation

● memoization
● order of computation
● dynamic programming

16.time and space

defining the
algorithm
7. generalize / define

subproblems
● partial solution
● alternatives
● subproblem

8. base case(s)
9. main case
10.top level

● initial subproblem
● setup
● wrapup

11.special cases
12.algorithm

CPSC 327: Data Structures and Algorithms • Spring 2024 144

Memoization

• store subproblem solutions in an array

For 0-1 knapsack, the subproblems are knapsack(S’,W’).

• find a representation where S’ and W’ are integers ≥ 0

• if W and the weights w
i
 are integers, W’ will be integer

• since the items can be considered in any order, let S be
an array of all n items and S’ = S[k..n-1]
– S’ can be represented by k

CPSC 327: Data Structures and Algorithms • Spring 2024 145

Formulation

Let V[k][w] = max value obtainable using items k..n-1 and
a total weight ≤ w.

• initial subproblem
– V[0][W]

• main case
– V[k][w] = max { V[k+1][w-wk]+vk, V[k+1][w] } if w

k
 ≤ w

– V[k][w] = V[k+1][w] otherwise

• base case
– V[k][0] = 0 [no room left to take items]
– V[n][w] = 0 [no items left to take, even with space]

CPSC 327: Data Structures and Algorithms • Spring 2024 146

Order of Computation

– V[k][w] = max { V[k+1][w-w
k
]+v

k
, V[k+1][w] } if w

k
 ≤ w

– V[k][w] = V[k+1][w] otherwise

Order of iteration –

• V[k] depends on V[k+1]

• fill in base cases first
– V[n][w] = 0 [no items left to take, even with space]

• then fill in k from n-1 to 0
– order doesn’t matter for w

CPSC 327: Data Structures and Algorithms • Spring 2024 147

Dynamic Programming

for w = 0..W do
 V[n][w] = 0

for k = n-1..0 do
 for w = 0..W do
 if (wk <= w)

 V[k][w] = max(V[k+1][w-wk]+vk,V[k+1][w])
 else
 V[k][w] = V[k+1][w])

CPSC 327: Data Structures and Algorithms • Spring 2024 148

Time and Space

Time and space –

• Wn entries to fill x O(1) per entry = O(Wn) total
– may be much better than O(2n), depending on W

(pseudopolynomial)

• Wn space required

• if the weights aren’t integer, can solve to an arbitrary
precision by multiplying W and w

i
 by a power of 10 – with

a corresponding increase in time and space

V[k][w] = max { V[k+1][w-wk]+vk, V[k+1][w] } if w
k
 ≤ w

V[k][w] = V[k+1][w] otherwise

