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Dynamic Programming

We combine several elements – 

• an optimization problem
• the need for exhaustive search (greedy is insufficient)

• the existence of repeated subproblems – it is possible to 
arrive at a given subproblem through different series of 
choices
– what matters for solving a subproblem is the state resulting from 

the partial solution, not the partial solution itself

• memoization – so each subproblem only needs to be 
solved once
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Optimal Substructure

• any series-of-choices formulation requires optimal 
substructure – an optimal solution can be constructed 
from optimal solutions of subproblems

empty partial 
solution – no 
decisions made optimal 

solutionpartial 
solution

the optimal path from a partial 
solution (blue path) is part of 
the optimal solution (red path)
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Dynamic Programming vs Recursive Backtracking

Both begin with the same recursive formulation –

• solution is constructed by making a series of decisions
• you consider the next possibilities for the current decision, 

then ask friends to solve the problem given the 
consequences of each choice

The difference is how the subproblems are parameterized 
and enumerated –

• recursive backtracking uses a depth-first search of the 
solution space
– subproblems depend on the series of decisions made
– may end up enumerating all possible series of decisions

• dynamic programming iterates through the states 
– subproblems depend on the state resulting from the series of 

decisions
– enumerates all possible states CPSC 327: Data Structures and Algorithms  •  Spring 2024 143

16(ish) Steps to Dynamic Programming Success

establishing the 
problem
1. specifications

● input
● output
● legal solution
● optimization goal

2. examples
3. size

brainstorming 
ideas
4. targets
5. tactics
6. approaches

showing 
correctness
13.termination

● making progress
● reaching the end

14. correctness
● establish the base 

case(s)
● show the main case
● final answer

determining 
efficiency
15.implementation

● memoization
● order of computation
● dynamic programming

16.time and space

defining the 
algorithm
7. generalize / define 

subproblems
● partial solution
● alternatives
● subproblem

8. base case(s)
9. main case
10.top level

● initial subproblem
● setup
● wrapup

11.special cases
12.algorithm
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Memoization

• store subproblem solutions in an array

For 0-1 knapsack, the subproblems are knapsack(S’,W’).

• find a representation where S’ and W’ are integers ≥ 0

• if W and the weights w
i
 are integers, W’ will be integer

• since the items can be considered in any order, let S be 
an array of all n items and S’ = S[k..n-1]
– S’ can be represented by k
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Formulation

Let V[k][w] = max value obtainable using items k..n-1 and 
a total weight ≤ w.

• initial subproblem
– V[0][W]

• main case
– V[k][w] = max { V[k+1][w-wk]+vk, V[k+1][w] } if w

k
 ≤ w

– V[k][w] = V[k+1][w]         otherwise

• base case
– V[k][0] = 0 [no room left to take items]
– V[n][w] = 0 [no items left to take, even with space]
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Order of Computation

– V[k][w] = max { V[k+1][w-w
k
]+v

k
, V[k+1][w] } if w

k
 ≤ w

– V[k][w] = V[k+1][w]         otherwise

Order of iteration –

• V[k] depends on V[k+1]

• fill in base cases first
– V[n][w] = 0 [no items left to take, even with space]

• then fill in k from n-1 to 0 
– order doesn’t matter for w
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Dynamic Programming

for w = 0..W do
  V[n][w] = 0

for k = n-1..0 do
  for w = 0..W do
    if ( wk <= w )  

      V[k][w] = max(V[k+1][w-wk]+vk,V[k+1][w]) 
    else 
      V[k][w] = V[k+1][w]) 
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Time and Space

Time and space – 

• Wn entries to fill x O(1) per entry = O(Wn) total
– may be much better than O(2n), depending on W 

(pseudopolynomial)

• Wn space required

• if the weights aren’t integer, can solve to an arbitrary 
precision by multiplying W and w

i
 by a power of 10 – with 

a corresponding increase in time and space

V[k][w] = max { V[k+1][w-wk]+vk, V[k+1][w] } if w
k
 ≤ w

V[k][w] = V[k+1][w]         otherwise


