

CPSC 327: Data Structures and Algorithms • Spring 2024 131

0-1 Knapsack

Initial solution value – upper bound or lower bound?
– maximization problem, so bigger is better
– update if solution is better → “safe” is an estimate which is not

good enough → “not good enough” is smaller → looking for
lower bound on the solution value

CPSC 327: Data Structures and Algorithms • Spring 2024 132

fill the pack with as much of each item as will fit (fractional amounts allowed),
considering items in order of decreasing value/weight ratio

CPSC 327: Data Structures and Algorithms • Spring 2024 135

Strategies

A good bound function depends on the specific nature of
the problem and what you can exploit about its structure.

But we've seen a few general tactics that might serve as
starting points –
• value so far + best single choice ✕ number of choices left
• value so far + best single next choice ✕ number of

choices left
– only safe if all choices are available at each stage (e.g. knapsack

but not TSP)

• value so far + greedy solution from that point
– only safe if greedy can do better than the actual solution (true for

knapsack, not for TSP and max independent set)

• consider trivial bound and what is over/undercounted
– e.g. max independent set - |S| overcounts because a vertex and

its neighbor can't both be in the set; |S|-mindeg(S) addresses
that for one vertex picked

CPSC 327: Data Structures and Algorithms • Spring 2024 136

Initial Solution Estimate

Upper or lower bound?
• safe = conservative = worse than the optimal

– if your estimate is better than the optimal, you'll prune away the
branch containing the optimal as not good enough

Note: bound is on the value of the optimal solution, not the
value of any legal solution

– e.g. “upper bound” does not mean that it needs to be worse than
all possible legal solutions – and that wouldn't help you prune
anything at all​

CPSC 327: Data Structures and Algorithms • Spring 2024 137

Initial Solution Estimate

Any legal solution is a safe estimate – it will be no better
than the optimal.
• greedy can be a good strategy

– e.g. greedy TSP – take cheapest edge to not-yet-included vertex
– e.g. maximal independent set – take any legal vertex until there

are no more

But you may be able to get a tighter estimate without having
an actual solution in mind.
(Then safety is important to establish.)

– e.g. 2*MST ≥ optimal TSP solution

CPSC 327: Data Structures and Algorithms • Spring 2024 138

Additional Strategies

How much can be pruned depends on two things:
– the tightness of the bound function
– the value of the best solution so far, which depends on:

• how well we can estimate its value at the beginning, and/or
• how quickly a good solution is found

How to search the best branches first?
– modified depth-first search: at each step, order alternatives to

explore most promising first
– best-first search: choose most promising subproblem first

• priority queue stores discovered nodes of the search tree with priority
corresponding to cost of partial solution

– A* heuristic: use bound function (cost of any complete solution stemming from
the partial solution)

• downside of BFS is potentially exponential size of the queue

